
Anticipatory Troubleshooting

Netanel Hasidi and Roni Stern and Meir Kalech
Ben Gurion University of the Negev

Be’er Sheva, Israel
{hasidi,sternron,kalech}@bgu.ac.il

Shulamit Reches
Jerusalem College of Technology

Jerusalem, Israel
shulamit.reches@gmail.com

Abstract

Troubleshooting is the process of diagnosing and
repairing a system that is behaving abnormally. Di-
agnostic and repair actions may incur costs, and
traditional troubleshooting algorithms aim to mini-
mize the costs incurred until the system is fixed. We
propose an anticipatory troubleshooting algorithm,
which is able to reason about both current and fu-
ture failures. To reason about failures over time,
we incorporate statistical tools from survival analy-
sis that enable predicting when a failure is likely to
occur. Incorporating this prognostic information in
a troubleshooting algorithm enables (1) better fault
isolation and (2) more intelligent decision making
in which repair actions to employ to minimize trou-
bleshooting costs over time. This paper was ac-
cepted to the International Joint Conference on Ar-
tificial Intelligence (IJCAI) 2016.

1 Introduction
System failures are prevalent in practically all the engineer-
ing fields, including automobiles, robots, information sys-
tems, and computer hardware. As systems become more
complex, failures often become more common and main-
tenance costs tend to increase. Thus, automated diagnosis
has been studied in the artificial intelligence field for sev-
eral decades, with substantial progress and successful appli-
cations in spacecrafts [Williams and Nayak, 1996], satellite
decision support systems [Feldman et al., 2013], automotive
industry [Struss and Price, 2003] and spreadsheets [Jannach
and Schmitz, 2014]. The output of diagnosis algorithms is a
set of possible diagnoses, where each possible diagnosis is an
explanation of the observed system failure.

While diagnosis, and in particular root-cause analysis, is
the task of understanding what has happened in the past that
has caused an observed failure, prognosis is the task of pre-
dicting what will happen in the future, and in our context
when will future failures occur. In parallel to the vast liter-
ature on automated diagnosis, there has been much work on
developing prognosis techniques for estimating the remaining
useful life of components in a system. In particular, survival
analysis is a sub-field of statistics in which various methods

have been developed to generate survival curves of compo-
nents, which are curves that plot the likelihood of a compo-
nent to survive (not fail) as a function of the components us-
age or age [Miller Jr, 2011]. Sophisticated Machine Learning
techniques have been shown to be able to learn such survival
curves from data [Eyal et al., 2014].

Consider the following illustrative example, in which a car
does not start. The mechanic inspecting the car observes that
the water level in the radiator is low. This suggests that the
radiator is not functioning well, which is a possible explana-
tion – a diagnosis – for why the car does not start. However,
alternative diagnoses are that the ignition system is faulty or
the battery is empty. Clearly, considering the age of the bat-
tery and the survival curve of batteries of the same type can
provide valuable input to the mechanic in deciding the most
likely diagnosis and consequent next troubleshooting action.

The first main contribution of this work is in show-
ing how prognosis and diagnosis, and in particular survival
curves and automated diagnosis algorithms, can be integrated
effectively. Practically, we propose an improved diagnosis al-
gorithm that considers both diagnostic information about the
relation between sensor data and faults, as well as the likeli-
hood of each component to fail given its age, obtained from
the corresponding survival curves.

Beyond diagnosis, we show that the integration of survival
curves into the model assists also to the troubleshooting pro-
cess. Troubleshooting is the process of diagnosing and re-
pairing an observed failure. Diagnostic and repair actions
may incur costs, such as the time spent in observing internal
components and the monetary cost of purchasing a new com-
ponent to replace a faulty one. Troubleshooting algorithms
aim to minimize the costs incurred until the system is fixed.

The second main contribution is to use prognosis tools,
and in particular, survival curves, to develop a troubleshoot-
ing algorithm that aims to minimize current troubleshooting
costs and future maintenance costs. These maintenance costs
includes costs due to future failures, which would require
additional troubleshootings and perhaps system downtime.
We refer to this type of troubleshooting, where future costs
are also considered, as anticipatory troubleshooting, and
propose an effective anticipatory troubleshooting algorithm.
In particular, the specific dilemma our troubleshooting algo-
rithm addresses is how to choose the most appropriate repair
action, given a component that is identified as faulty. For ex-



ample, fixing a faulty component may be cheaper than replac-
ing it with a new one. On the other hand, a new component
is less likely to fail in the near future. Our anticipatory trou-
bleshooting algorithm leverages available survival curves to
choose the appropriate repair action intelligently. We demon-
strated experimentally the benefit of our approach on bench-
mark systems modeled by a Bayesian network, showing sig-
nificant gains.

2 Related Work
Many works on automated troubleshooting are based on the
seminal work of Heckerman et al. [1995] on Decision The-
oretic Troubleshooting (DTT). Our paper can be viewed as
a generalization of DTT by adding prognosis consideration.
A decision theoretic approach integrating planning and di-
agnosis was applied to a real-world troubleshooting applica-
tion [Warnquist et al., 2009; Pernestål et al., 2012]. In their
setting a sequence of actions may be needed to perform re-
pairs. For example, a vehicle may need to be disassembled
to gain access to its internal parts. To address this problem,
they used a Bayesian network for diagnosis and the AO* al-
gorithm [Nilsson, 1982] as the planner. Torta et al. [2014]
proposed the use of abstractions to improve the efficiency of
troubleshooting. Friedrich and Nedjl [1992] proposed a trou-
bleshooting algorithm aimed at minimizing the breakdown
costs, a concept that corresponds roughly to a penalty in-
curred for every faulty output in the system and for every
time step until the system is fixed. The novelty of our work
is two-fold. First, none of these previous works incorporated
prognosis estimates into the troubleshooting algorithm (as we
do in Section 4.1). Second, our anticipatory troubleshooting
model and algorithm directly attempt to minimize costs in-
curred due to current and future failures.

A related line of work is in prognostics, where diagnos-
tic information is used to provide more accurate remaining
useful life estimations [Ferreiro et al., 2012; Tobon-Mejia et
al., 2012]. There is also work in prognostic on Prognostic
Decision Making, where scheduling maintenance activities is
done intelligently by using prognostic information [Balaban
and Alonso, 2012]. By contrast, we aim to improve deci-
sion making for fixing a current fault, but consider also fu-
ture faults. Somewhat similar is the work of McNaught and
Zagorecki (2009), who considered several possible repair ac-
tions and their impact on future faults by unfolding a dynamic
Bayesian network. However, they did not propose an actual
method to choose which action to perform, as we do.

3 Troubleshooting
A system is composed of a set of components, denoted
COMPS. A component C ∈ COMPS is either healthy or
faulty, denoted by the health predicate h(C) or ¬h(C), re-
spectively. The state of a system, denoted ξ, is a conjunction
of health literals defining for every component whether it is
healthy or not. A troubleshooting agent is an agent capable
of performing sensing and repair actions. The agents belief
about the state of the system, denotedB, is a conjunction of
health literals. We assume that the agents knowledge is cor-
rect, i.e., if h(C) ∈ B → h(C) ∈ ξ. The agents belief, how-

Action System state (ξ) Agent’s belief B
Start {¬h(C1), h(C2), h(C3)} {h(C3)}
SenseC2

{¬h(C1), h(C2), h(C3)} {h(C3), h(C2)}
SenseC1

{¬h(C1), h(C2), h(C3)} {h(C3), h(C2),¬h(C1)}
RepairC1 {h(C1), h(C2), h(C3)} {h(C3), h(C2), h(C1)}

Table 1: An example of a troubleshooting process

ever, may be incomplete, i.e., there may exists aC ∈ COMPS
such that neither h(C) nor ¬h(C) is in B. A troubleshoot-
ing problem arises if the system is identified as faulty, e.g.,
by some fault detection mechanism. We assume that such a
mechanism exists, revealing to the agent whether the system
is faulty or not. In this work we focus on the single-fault
case, i.e., where a single component is faulty.

An action of the troubleshooting agent is a transition func-
tion, accepting and potentially modifying both system state
ξ and agent’s belief B. We consider two types of actions:
sense and repair. Each action is parametrized by a sin-
gle component, where SenseC checks if C is healthy or not,
and RepairC results in C being healthy.1 Formally, applying
SenseC does not modify ξ, and updates B by adding h(C)
if h(C) ∈ ξ or adding ¬h(C) otherwise. Similarly, apply-
ing RepairC adds h(C) to both B and ξ, and removes ¬h(C)
from B and ξ if it was there.

Definition 1 (Troubleshooting Problem (TP)) A TP is de-
fined by the tuple P=〈COMPS, ξ, B,A〉 where (1) COMPS
is the set of components in the system, (2) ξ is the state of the
system, (3) B ⊆ ξ is the agent’s belief about the system state,
and (4) A is the set of actions the troubleshooting agent is
able to perform. A TP arises if ∃C ¬h(C) ∈ ξ. A solution to
a TP is a sequence of actions that results in a system state in
which all components are healthy.

A troubleshooting algorithm (TA) is an algorithm for guid-
ing a troubleshooting agent faced with a TP. TAs are iterative:
in every iteration the TA accepts the agent’s current belief
B as input and outputs a sense or repair action for the trou-
bleshooting agent performs. A TA halts when the sequence of
actions it outputted forms a solution to the TP, i.e., when the
system is fixed. The solution outputted by a TA π to a TP P is
denoted by π(P ). Both sense and repair actions incur a cost.
The cost of an action a is denoted by cost(a). The cost of
solving P using π, denoted by cost(π, P ), is the sum of the
costs of all actions in π(P ): cost(π, P ) =

∑
a∈π(P ) cost(a).

TAs aim to minimize this cost.
Consider the mentioned earlier car diagnosis example, in

which there are three relevant components that may be faulty:
the radiator (C1), the ignition system (C2), and the bat-
tery (C3). Assume that the radiator is the correct diag-
nosis, meaning the radiator is really faulty, and the agent
knows that the battery is not faulty. The corresponding sys-
tem state ξ and agent’s belief B are represented by: ξ =
{¬h(C1), h(C2), h(C3)} and B = {h(C3)}. Table 1 lists
a solution to this TP, in which the agent first senses the igni-
tion system, then the radiator, and finally repairs the radiator.
Formally, π(P ) = {SenseC2

, SenseC1
,RepairC1

}. If the cost

1See Stern et al. [2016] for a discussion on actions that apply to
a batch of components.
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Figure 1: An example of exponential survival curves.

of sense is one and the cost of repair is five, then the trou-
bleshooting costs of this solution is 1+1+5=7.

4 Troubleshooting with Survival Functions
If the cost of sense actions is much smaller than the cost of
repair actions, then an intelligent troubleshooting algorithm
would only repair components that were first identified as
faulty as a result of a sense action. This simplifies the trou-
bleshooting process: perform sense actions on components
until a faulty component is found, and then repair it. The
challenge is which component to sense first.

To address this challenge, efficient troubleshooting algo-
rithms use a diagnosis algorithm (DA). A DA outputs one
or more diagnoses, where a diagnosis is a hypothesis about
which components are faulty. Moreover, many DAs output
for each diagnosis ω the likelihood that it is correct, denoted
p(ω). These diagnoses likelihoods can be aggregated to pro-
vide an estimate of the likelihood that each component is
faulty, denoted p(C) [Stern et al., 2015]. A reasonable trou-
bleshooter can then choose to sense first the component most
likely to be faulty.

Many DAs have been proposed in the literature. Most ef-
fective DAs use some prior knowledge about the diagnosed
system to provide accurate diagnoses. Model-based diagnosis
(MBD) is a classical approach to diagnosis in which an exist-
ing model of the system together with observations of the sys-
tem behavior, are used to infer diagnoses. Some MBD algo-
rithms assume a system model that represents the system be-
havior using propositional logic and use logical reasoning to
infer diagnoses that are consistent with system model and ob-
servations [Feldman et al., 2010; Williams and Ragno, 2007;
De Kleer and Williams, 1987]. In general, most MBD algo-
rithms implicitly assume that the system model represents the
relation between the system inputs (including sensors) and
outputs, and the components behavior. In this work we use
a DA based on a Bayesian network (BN) that represents the
probabilistic dependency between observations and the sys-
tem health state. Next, we show how techniques from sur-
vival analysis allow augmenting such models with informa-
tion about the age of each component and its implication on
the likelihood of components to be faulty.

4.1 Integrating Survival Analysis into a DA
Every component C is associated with an age AgeC . Let TC
be a random variable representing the age in which C will
fail. A survival function for C, denoted SC(t), is the prob-
ability that C will survive until the age t, meaning it will not
fail before age t. Formally: SC(t) = Pr(TC ≥ t). Survival
functions can be obtained by analysis of the physics of the

corresponding system or learned from past data [Eyal et al.,
2014]. Figure 1 illustrates three possible survival curves gen-
erated by an exponential decay function e−λ·t, where λ is a
parameter and t is the age (the x-axis). The y-axis represents
the probability that a component will survive (= not fail) t
time units (e.g., months). The three curves plotted in Figure 1
correspond to three values of the λ parameter.

The challenge is how to compute the probability that a
component C caused a system failure given its age and sur-
vival function. In most systems, faulty components fail inter-
mittently, i.e., a component may be faulty but act normally.
Thus, the faulty component that caused the system to fail may
have been faulty even before time t. Therefore, we estimated
the probability of a componentC of ageAgeC to have caused
the system failure by the probability that it has failed anytime
before the current time. This probability is directly given by
1− SC(AgeC), denoted by FC(AgeC).

Thus, for a given component C we have two estimates for
the likelihood that it is correct: one from the MBD algo-
rithm (p(C)) and one from its survival curve (FC(AgeC)).
The MBD algorithm’s estimate is derived from the currently
observed system behavior or knowledge about the system’s
structure. The survival curve estimate is derived from knowl-
edge about how such components tend to fail over time. We
propose to combine these estimates to provide a more accu-
rate and more informed diagnostic report.

A simplistic approach to combine these fault likelihood es-
timates is by using some weighted linear combination, such
that the weights are positive and sum up to one. However,
we argue that these estimates are fundamentally different:
FC(AgeC) is an estimate given a-priori to the actual fault,
while p(C) is computed by the MBD algorithm for the spe-
cific fault at hand, taking into consideration the currently
observed system behavior. Indeed, MBD algorithms often
require information about the prior probability of each com-
ponent to be faulty when computing their likelihood esti-
mates [De Kleer and Williams, 1987; González-Sanchez et
al., 2011; Zamir et al., 2014; Mengshoel et al., 2010]. How-
ever, these priors are often set to be uniform, although it has
been shown that setting such priors more intelligently can
significantly improve diagnostic accuracy [Elmishali et al.,
2016]. Therefore, we propose to use the fault likelihood esti-
mation given by the survival curves as priors within the like-
lihood estimation computation done by the MBD algorithm.

Specifically, we experimented with an MBD that computes
diagnoses by applying inference on a BN [Mengshoel et al.,
2010]. The BN contains both health variables and other vari-
ables such as sensor readings. The values of the observable
variables are set, and then the marginal of each health vari-
able is computed by applying an inference algorithm on the
BN. The Bayesian reasoning done by the inference algorithm
requires a prior probability. We propose to use SC(AgeC)
as this prior probability (and normalize the fault probability
over the remaining probability sum). Other ways to integrate
survival curves in an MBD are also possible, and the key con-
tribution is that doing so is beneficial.

Consider our running example of a car that does not start.
Figure 2 depicts a possible BN representing this example.
Nodes Ig, B, and R correspond to the health variables for



R P(R) S(5)

OK 0.99 0.76

F 0.01 0.24
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OK 0.98 0.34

F 0.02 0.66

Ig P(Ig) S(3)

OK 0.99 0.64

F 0.01 0.36

Figure 2: A simple BN for our car diagnosis running example.

the ignition, battery, and radiator, respectively. Now W cor-
respond to the water level variable, and C correspond to the
observation that the car not starting. The Conditional Proba-
bility Tables (CPTs) for all nodes except C are also displayed
in Figure 2. The value of C deterministically depends on Ig,
B, andR: only if all components are healthy can the car start.
Modeling such dependency (a logical OR) in a BN is trivial.
Note that we disallow multiple faults (these are mapped to a
“N/A” value of C). Now, assume that the car does not start
(C=False) and the water level is low (W=Low). Given this
evidence we apply Bayesian reasoning to get the likelihood
of each component to be faulty. In our case, the likelihood of
Ig, B, or R to be faulty is 0.16, 0.33, and 0.52, respectively.
Thus, a troubleshooter would sense first R.

However, assume that the ages of the ignition (Ig), bat-
tery (B), and radiator (R) are 3, 12, and 5, respectively, and
that they all follow an exponential survival curve e−0.09·t.
Thus, according to the components age and survival curves
the probability of Ig, B, and R to be faulty are 0.24, 0.66,
and 0.36, respectively. Setting these probabilities instead of
the original health nodes’ priors is shown in Figure 2 in the
S(X) columns in the CPTs. Setting these priors dramatically
affects the result of the Bayesian reasoning, where now the
probability of Ig, B, and R to be faulty is 0.16, 0.56, and
0.28, respectively. As a result, a troubleshooter that is aware
of both BN and survival curves would choose to sense the
battery (rather than the radiator).

5 Anticipatory Troubleshooting
The main benefit of using survival functions in the context
of troubleshooting is in the ability to reason about future
failures, with the goal of minimizing troubleshooting costs
over time. Formally, let [0, Tlimit] be the time range in which
we aim to minimize troubleshooting costs. During this time
range, components in the system may fail. When the sys-
tem fails, a troubleshooting process is initiated, performing
sense and repair actions until the system is fixed. The target
function we wish to minimize is the sum of costs incurred
due to actions performed by the troubleshooting agent in the
time range [0, Tlimit]. 2 We refer to this sum of troubleshoot-
ing costs as the long-term troubleshooting cost, and call a
troubleshooting algorithm that aims to minimize this cost an
anticipatory troubleshooting algorithm.

2Note that we exclude from this process the task of fault detec-
tion, i.e., we assume that the troubleshooter is given a system that is
not working properly and needs to be repaired.

When there is only a single sense action and a single re-
pair action, there is no difference between an anticipatory
troubleshooting and a troubleshooting algorithm only aim-
ing to minimize the current troubleshooting costs. The dif-
ference between traditional troubleshooting and anticipatory
troubleshooting is meaningful when there are multiple re-
pair actions. In other words, after the troubleshooting algo-
rithm identified which component is faulty, the troubleshooter
needs to decide which repair action to use to repair it. Next,
we describe such a setting, where there are two possible re-
pair actions: Fix and Replace.

5.1 Fix vs. Replace
Applying a Replace(C) action means that the troubleshoot-
ing agent replaces C with a new one. Applying Fix(C) action
means that the troubleshooting agent fixes C without replac-
ing it. Both fix and replace are repair actions, in the sense that
after performing them the component is healthy and the agent
knows about it, i.e., replacing ¬h(C) with h(C) in both the
system state and the agent’s belief.

However, we expect Fix and Replace to differ in two realis-
tic aspects. First, Fix is expected to be cheaper than Replace.
Second, after replacing a component its ability to survive is
expected to be significantly higher than that after it has been
fixed, since the replaced component is new. To formalize this,
let SC(t, AgeC) be the survival curve of C after it was fixed
at age AgeC , i.e., the probability of C to survive t time units
after it was fixed, given that it was fixed at age AgeC .

SC(t, AgeC) = Pr(TC ≥ t+AgeC |C fixed at age AgeC)

We call such a survival function an after-fix survival func-
tion. Formally, the expected differences relations between fix
and replace are:

∀C ∈ COMPS : cost(Fix(C)) < cost(Replace(C)) (1)
∀t ∈ [0, Tlimit] ∀C ∈ COMPS : SC(t, AgeC) < SC(t) (2)

Intuitively, fixing a faulty component is cheaper, but may re-
sult in future faults being more frequent. This embodies the
main dilemma in anticipatory troubleshooting: weighing cur-
rent troubleshooting costs (Fix is preferable) against potential
future troubleshooting costs (Replace is preferable).

5.2 Choosing the Appropriate Repair Action
An exhaustive and almost optimal approach to choose which
repair action to perform is to discretize the time range
[0, Tlimit], model the problem as a Markov Decision Problem
(MDP), and apply an off-the-shelf MDP solver, as follows.
Discretization. The time limit [0, Tlimit] is partitioned
to a non-overlapping set of equal-sized time ranges T =
{T0, . . . , Tn}. Each Ti is referred to as a time step, and let
∆t be the size of each time step.
MDP modeling. An MDP is defined by a state space S, a
set of actions A, a reward function R(s, a), and a transition
function Tr(s, a, s′). A state in our state space is defined by a
tuple s = 〈Ti, C,Curves,Ages〉, representing a state in which
component C was diagnosed as faulty at time step Ti, where
Curves and Ages are vectors representing the survival curves
and ages of all components in COMPS. C can be null, rep-
resenting a state in which no component was faulty at time



Ti. Recall that we only consider single fault scenarios, i.e,
at most one component is fault at every time step. States for
time Tn+1 are terminal states. The set of actions A consists
of three actions: Replace(C), Fix(C), and no-op. no-op rep-
resents not doing any action. The reward function R(s, a) is
minus the cost of the executed action, where the no-op action
costs zero. The state transition function is as follows. After
any action, a state for time step Ti will transition to a state
for Ti+1. The MDP transition function Tr(s, a, s′), which is
a function that returns the probability of reaching state s′ af-
ter performing action a at state s, is defined as follows. Let
s = 〈Ti, C,Curves,Ages〉 and s′ = 〈Tj , C ′,Curves′,Ages′〉.
The values of Tj , Curves′, and Ages′, are set deterministi-
cally by s and a: Tj = Ti+1, Curves′ is only updated after a
Fix(C) action (replacing C’s survival function with its after-
fix curve), and Ages′ consists of all components being older
by one time step, except for when C is replaced (in which
case the age of C is set to zero). The uncertainty in state tran-
sition is which component, if any, will be faulty in the next
time step. Let SC′ andAgeC′ be the survival curve and age of
C ′ according to Curves′,Ages′. The probability that C ′ will
fail at a specific time range Tj given its survival curve is:

Pr(TC′ ∈ Tj) = SC′(AgeC′ −∆t)− SC′(AgeC′)

which is a standard computation in survival analysis: the
probability of surviving before Tj (when the age of C ′ was
AgeC′ − ∆t) minus the probability of surviving until Tj
(when the age of C ′ is AgeC′ ).
Solving the MDP. The state space of this MDP is exponen-
tial in the number of time steps reasoned about (n). Textbook
MDP algorithms, such as Value Iteration and Policy Itera-
tion, and AO* [Nilsson, 1982], will not work. Sophisticated
sampling-based approaches, such as real-time dynamic pro-
gramming (RTDP) [Barto et al., 1995] may be applicable.

In our experiments we implemented a simple decision rule
that roughly corresponds to reasoning about a single level
of this MDP state space. We call this decision rule Deci-
sion Rule 1 (DR1), and explain it next. Let Creplace =
cost(Replace(C)), Cfix = cost(Fix(C)), and Tleft be the
time left until Tlimit. Following DR1 is to replace a faulty
component C iff the following inequality holds:

Creplace + (1− SC(Tleft)) · Creplace ≤
Cfix + (1− SC(Tleft, AgeC)) · Creplace (3)

DR1 has the following property.
Proposition 1 DR1 is optimal if the following holds: (1) a
component will not fail more than twice in the time range
[0, Tlimit], (2) a component can be fixed at most once, (3) a
replaced component will not be fixed in the future, and (4)
components fail independently.

Proof of proposition 1 is omitted due to space constraints.
DR1 is not optimal when the assumptions in Proposition 1 do
not hold, but it can still be effective, as shown below.

6 Experimental Results
To evaluate the proposed algorithms, we performed two sets
of experiments: “one-shot” experiments, in which a single TP

Figure 3: BN for system S2.

is solved (evaluates the method in Section 4.1), and “long-
term” experiments, in which troubleshooting costs are accu-
mulated (evaluates the method in Section 5.2).

6.1 Benchmark Systems
The experiments were performed over two systems, mod-
eled using a Bayesian network (BN) following the stan-
dard use of BN for diagnoses [Choi et al., 2011]. The
first system, denoted S1, represents a real world Electri-
cal Power System. The BN was generated automatically
from formal design [Mengshoel et al., 2010] and is pub-
licly available (reasoning.cs.ucla.edu/samiam/
tutorial/system.net). It has 26 nodes, of which 6
are health nodes. The second system, denoted S2, is the
“CAR DIAGNOSIS 2” network from the library of bench-
mark BN made available by Norsys (www.norsys.com/
netlib/CarDiagnosis2.dnet). The system repre-
sents a network for diagnosing a car that does not start, based
on spark plugs, headlights, main fuse, etc. It contains 18
nodes. From these nodes, 7 nodes are health nodes. Figure 3
shows the graphical representation of S2.

6.2 Survival Curves and Component Ages
Unfortunately, we did not have real data for the above systems
from which to generate survival curves. Therefore, we used a
standard exponential curve (defined earlier in this paper and
illustrated in Figure 1) with λ = 0.09. Exponential curves are
fundamental parametric models used in the survival analysis
literature [Ibrahim et al., 2005].

We set the age of each component to be Ageinit plus a ran-
dom number between zero andAgediff, whereAgeinit is a con-
stant set arbitrarily to 0.3 and Agediff is a parameter we var-
ied in our experiments. The purpose of the Agediff parameter
is to control the possible impact of considering the compo-
nents’ survival functions: a small Agediff results in all com-
ponents having almost the same age, and thus the survival
curves do not provide significant information to distinguish
between which component is more likely to be faulty.

6.3 One-Shot Experiments
In this set of experiments we generated random TPs (details
below) and compared the performance of four TAs: (1) Ran-
dom, which chooses randomly which component to sense, (2)
BN-based, which chooses to sense the component most likely
to be faulty according to the BN, (3) Survival-based, which

reasoning.cs.ucla.edu/samiam/tutorial/system.net
reasoning.cs.ucla.edu/samiam/tutorial/system.net
www.norsys.com/netlib/CarDiagnosis2.dnet
www.norsys.com/netlib/CarDiagnosis2.dnet
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Figure 4: One-shot exp. results, for S1 (left) and S2 (right).
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Figure 5: Long-term exp. results, for S1.

chooses to sense the component most likely to be faulty ac-
cording to its survival curve and age, and (4) Hybrid, which
chooses to sense the component most likely to be faulty tak-
ing into consideration both BN and survival curve, as pro-
posed in Section 4.1. Performance of a TA was measured by
the troubleshooting costs incurred until the system is fixed.
Since we only considered single fault scenarios, we omitted
the cost of the single repair action performed in each of these
experiments, as all algorithms had spent this cost.

Each TP was generated with a single faulty health node as
follows. The value of non-health nodes in the BN that do not
depend on any other node were set randomly according to
their priors. We refer to these nodes as control nodes. Then,
the age of each component was set as mentioned above, i.e.,
by sampling uniformly in the range [Ageinit, Ageinit+Agediff].
Then, the CPT of every health node was modified to take into
account the survival curve as mentioned in Section 4.1, i.e.,
the prior of being healthy was set to SC(AgeC). Next, we
computed the marginal probability of each component to be
faulty in this modified BN, and chose a single component
to be faulty according to these computed probabilities. Fi-
nally, we sampled from the BN values for all remaining nodes
(nodes that are not control or health node), setting the values
of the already set nodes. These nodes are called the sensor
nodes, and a subset of them were revealed to the DA.

Figure 4 shows the troubleshooting cost for each of the al-
gorithms, for different values of the Agediff parameters, for
S1 and S2. All results are averaged over 50 instances. Sev-
eral trends can be observed. First, the proposed Hybrid TA
outperforms all baseline TAs, thus demonstrating the impor-
tance of considering both survival curves and MBD. Second,
asAgediff grows, the performance of Survival improves, since
the components’ age differ more, and thus considering it is
more valuable. When Agediff is minimal, the performance

of Survival is similar to Random and worse than BN. BN
is better, since we provide it with evidence – the values of
some sensor nodes (in the case of S1 we revealed 9 sensor
nodes and for S2 we revealed 2 sensor nodes). We also ex-
perimented with different numbers of revealed nodes. As ex-
pected, revealing more nodes improves the performance of
both BN and Hybrid. In conclusion, these results demonstrate
that Hybrid is more robust than both Survival and BN, and is
either equal or outperforms them across all varied parameter.

6.4 Long-Term Experiments

In this set of experiments we generated random TPs over a
period of 28 months (i.e., Tlimit=28), choosing when each
component fails according to its survival function (details be-
low). In each experiment we used one of the following TAs to
solve the TPs that arise: (1) Always Fix (AF), in which faulty
components are repaired using the Fix action, (2) Always Re-
place (AR), in which faulty components are repaired using
the Replace action, and (3) Hybrid, in which DR1 (Section
5.2) was used to choose the appropriate repair action. The
performance of each algorithm is measured by the sum of
troubleshooting costs incurred when solving all the TPs that
arose. Since the focus of these experiments is to study the
Fix vs. Replace dilemma, we omitted the costs incurred due
to Sense action, and only measured the cost the repair action
used in every troubleshooting session, i.e., Creplace or Cfix.

To sample when a component will fail after it was fixed,
and to compute the Hybrid TA, we require an after-fix sur-
vival function (SC(t, AgeC). Such functions can be given by
domain experts or learned from past data, but neither were
available to us. There, we devised the following after-fix sur-
vival function SC(t, AgeC) = (SC(t))P , where P is a pa-
rameter we call the fix punish factor. This after-fix survival
curve holds the intuitive requirement that a replaced compo-
nent is more likely to survive longer than a component that
was fixed (Equation 2). The punish-factor parameter P
controls the difference between the after-fix and the reg-
ular survival function. Figure 1 shows the survival curves
after a punish factor of 2 and 5. Another important param-
eter in this set of experiments is the ratio between Creplace
and Cfix. We refer to this parameter as the cost ratio param-
eter. We experimented with a range of values for these two
parameters and studied their impact on the long-term costs.

Figure 5 shows the results of the long-term experiments on
system S1. The x-axis shows different cost ratios, in buckets
of punish-factor values. The y-axis shows the long-term trou-
bleshooting costs. The impact of both parameters is clear.
When cost ratio is small, then Fix is significantly cheaper
then Replace, and thus the Always Fix (AF) algorithm per-
forms best. Similarly, when the punish factor is very high, a
fixed component is much more likely to fail than a replaced
one, thus Always Replace (AR) performs best. The Hybrid
algorithm successfully chooses when to replace or fix in most
parameter combinations. The same trends were also observed
for system S2. Thus, even though the assumptions in which
DR1 (=Hybrid) is optimal do not hold in our experiments
(e.g., a component may have more than two faults), we see
that using it allows an effective balance between AF and AR.



7 Conclusion
We suggested the use of prognosis tools, and in particular sur-
vival curves, to lower troubleshooting costs. Two scenarios
are presented where this integration of prognosis and diagno-
sis is useful. First, improving troubleshooting costs by using
fault predictions from survival curves as priors in an MBD al-
gorithm. Second, developing an anticipatory troubleshooter
that chooses whether a faulty component should be fixed or
replaced by considering possible future troubleshooting costs.
Experimental results over two BN-based system models show
the benefits of the developed survival-curve-aware TAs.

This works opens the possibility of future research on an-
ticipatory troubleshooting. For example, to consider a decay-
ing model of long-term costs instead of pre-defining a time
range [0, Tlimit] in which to minimize costs.
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