
Minimal Hitting Set Computation via Hypothesis Exploration

Marina Zanella1 and Ingo Pill2
1Department of Information Engineering, University of Brescia, Brescia, Italy

e-mail: marina.zanella@unibs.it
2Institute for Software Technology, Graz University of Technology, Graz, Austria

e-mail: ipill@ist.tugraz.at

Abstract
Minimal hitting set (MHS) computation is a chal-
lenging problem in conflict-oriented model-based
diagnosis. This paper is a first attempt to face the
problem by searching the powerset H of the con-
flicts’ domain, which exhibits a partial order in re-
spect of subset inclusion. Our idea is to enhance
this partial order by ordering H ∈ H, called a
hypothesis, in each (cardinality) layer of the pow-
erset. The overall regularity can then be exploited
to process a layer at a time, according to an as-
cending cardinality of the hypotheses, checking
whether each hypothesis is valid, and pruning all
its supersets (that necessarily belong to the next
layers) in one shot if it is. This is a high-level
description of a template anytime algorithm that
can host different methods of checking whether a
given hypothesis is valid, and that is the basis not
only for a monolithic computation of MHSs but
also for a distributed one.

1 Introduction
Minimal hitting sets (MHSs) are a very interesting structural
aspect that can help with isolating solutions in several con-
texts [Eiter et al., 2008]. They can be used, for instance,
for converting the disjunctive normal form of a Boolean for-
mula into its conjunctive counterpart and vice versa. Some
fundamental contributions [de Kleer and Williams, 1987;
Reiter, 1987; Greiner et al., 1989] showed the worth of
MHSs also for diagnostic reasoning when a system model
is taken into account. In this case, we can add special health
state variables encoding our assumptions whether the indi-
vidual system components work correctly. Then, we can
compute the desired diagnoses as MHSs of the conflicts be-
tween our assumptions that the components work correctly
and the observed behavior. A MHS contains at least one
element of each conflict (minimal or not) and thus, if we
assume the corresponding components to work abnormally,
the conflicting assumptions in the minimal conflicts are re-
solved (and in turn also in the non-minimal ones) by such a
diagnosis.

Reiter’s approach intermingles conflict detection and
MHS computation, whereas de Kleer and Williams’ variant
first computes all the conflicts. But for both, and some other
conflict-oriented model-based diagnosis (MBD) approaches
(like when using HST [Wotawa, 2001] or RC-Tree [Pill and
Quaritsch, 2015]), the exploration of the diagnosis search

space via MHS computation is based on the conflicts rather
than the hypothesis space as defined by 2M (M being the
set of health state variables). In this paper, we will explore
an option for MHS computation that focuses on the latter.

Our motivation for this originates in the attractive per-
formance [Nica et al., 2013] of methods that use a gen-
eral purpose solver, such as a SAT solver, to derive diag-
noses directly from a satisfiability encoding of a MBD prob-
lem [Metodi et al., 2012]. Such methods iteratively search
for satisfying assignments with a limited number of violated
health state assumptions, and add blocking clauses to the
encoding whenever a solution is found (for avoiding this so-
lution and its supersets in the future). If we now start with a
cardinality limit of one and increase it if, and only if, there
is no solution anymore for the current cardinality, we can
indeed explore the whole search space.

Internally, a solver identifies a satisfying assignment
to the problem encoding by Boolean constraint propaga-
tion [Moskewicz et al., 2001], such that some variable as-
signments can be deduced from currently available data via
the clauses in the encoding. If there is no further knowledge
to propagate, the solver has to decide about some unassigned
variable values in order to be able to proceed (such decisions
might however have to be retracted later on, if they prohibit
a satisfying assignment) [Moskewicz et al., 2001]. Obvi-
ously, the resulting search for diagnoses leans more on the
hypothesis space, rather than the conflicts.

In order to implement a similar approach for MHS com-
putation, we thus propose in this paper a method implement-
ing a not-so-brute-force strategy for conquering the hypoth-
esis space, and show also how this approach can be used to
compute MHSs. Exploiting a general purpose SAT solver
for computing MHSs did not show attractive performance in
earlier tests (in contrast to diagnosis computation), so that
we deem an investigation of the options for a hypothesis-
oriented MHS computation a rather interesting one.

In the remainder of this paper, Section 2 provides a back-
ground about the notions of MHS problem and hypothesis
space; Section 3 proposes an additional order for the hy-
pothesis space and a strategy to explore it; finally, Section 4
draws some conclusions.

2 Preliminaries
Let us start with a formal definition of a MHS.

Definition 1. Let N be a finite collection of finite sets Ni

that contain elements in the domain M . A set H ⊆ M is a
hitting set forN if and only if, for all Ni ∈ N , H ∩Ni 6= ∅.

Such a hitting set H is minimal if there is no H ′ ⊂ H s.t.
H ′ is a hitting set of N . A hitting set H of N can only
contain elements in MN ⊆ M , which restricts M to the
finite domain of elements occurring in N (that is, MN is
the union of all Ni ∈ N). The problem of finding all MHSs
for some N is referred to as the MHS problem.

In our definition, we consider minimality in the context
of subset containment. In the literature, there are further
options including cardinality (a hitting set of minimum car-
dinality is referred to as a minimum hitting set), or also
probabilities [de Kleer and Williams, 1987] and similar
weight/cost functions.

The exponential search space for solutions to a MHS
problem instance is the powerset 2MN , denoted H and
called the hypothesis space. Since the relation of subset in-
clusion (⊆) is reflexive, antisymmetric and transitive,H is a
poset and can be displayed as a Hasse diagram, like the one
shown in Fig. 1 for MN = {a, b, c, d}. Following the idea of
subset inclusion, a hypothesis H1 is preferable to H2 if, and
only if, H1 ⊂ H2. Looking at the Hasse diagram example,
this is a directed (acyclic) graph where nodes are hypotheses
and edges (that are implicitly downward) implement such a
preference relation in that all nodes in the subgraph rooted
in some hypothesis H represent hypotheses H ′ that are less
preferable than H . Thanks to the partial order induced by
subset inclusion, H exhibits a hierarchical structure, where
each layer includes all and only the hypotheses having the
same cardinality.

Definition 2. Given some hypothesis space H, the suc-
cessors H ′ of some hypothesis H (denoted as succ∗(H))
are those hypotheses that are less preferable than H as
H ⊂ H ′. Consequently, those hypotheses H ′ are in the
subgraph rooted in H in the Hasse diagram for H, and we
call H a predecessor of H ′. Those successors H ′ such that
|H ′|− |H| = 1 are the immediate successors of H (denoted
as succ(H)), and a hypothesis H is an immediate predeces-
sor of any of its immediate successors.

Intuitively, a hypothesis H can be encoded as a bi-
nary word bin(H) with length |MN | such that each bit in
bin(H) tells us, for a given order in MN , whether a specific
m ∈ MN is included in H or not. The binary representa-
tion of any immediate successor Hs of some hypothesis H
has exactly one bit assigned 1 which is 0 for bin(H), while
the binary representation of any immediate predecessor Hp

of H has exactly one bit assigned 0 which is 1 for bin(H),
with the other bits unchanged. This leaves us with the fol-
lowing properties:

Corollary 1. The Hamming distance between hypothesis H
and its immediate predecessors as well as immediate suc-
cessors is 1 considering their binary representations.

Corollary 2. Hypotheses H1 and H2, with H1 6= H2 and
such that |H1| = |H2| (they are at the same level in the
Hasse diagram), are incomparable in respect of the chosen
preference relation (subset containment), and share at most
one immediate successor due to Corollary 1.

Corollary 3. For any given pair of immediate predecessors
Hp1 and Hp2 of hypothesis H , we have H = Hp1 ∪ Hp2,
and bin(H) = bin(Hp1) OR bin(Hp2) for a bitwise logic
OR. Consequently, the Hamming distance between the bi-
nary representations of Hp1 and Hp2 is 2.

3 Traversing the Hypothesis Space
The layers in the hypothesis space are top-down ordered by
ascending cardinality. Since no hypothesis in a layer is less
preferable than any hypothesis in the lower layers, a top-
down exploration of the hypothesis space that takes into ac-
count one layer at a time guarantees to single out the valid
hypotheses (e.g. the hitting sets) that are the most preferred
(i.e. the MHSs) first. However, the hypotheses on each layer
are incomparable by subset inclusion. For a structured ap-
proach at traversing H, let us introduce an additional or-
der for the hypotheses with the same cardinality, so as to
achieve a total order on the hypothesis space. To this end,
we can use the binary numbers represented by bin(H) such
that the highest number associated with some H at level i in
the Hasse diagram is at the very left, it is progressively de-
creasing from left to right, so as the lowest number is on the
very right. This means that, for a given cardinality i = |H|,
in the binary representation of the left-most hypothesis the
left-most i bits are assigned 1 and the others 0, while in
that of the right-most hypothesis the right-most i bits are as-
signed 1 and the others 0. The binary representations of all
the hypotheses on the same layer include i instances of 1.

The following partition of the set of immediate succes-
sors of a hypothesis will allow us to traverseH without pro-
ducing a hypothesis twice, as it will become clear in Corol-
lary 6. An idea for avoiding the generation of a hypothesis
twice, that is similar to the one explained here but focuses
on conflict-oriented MHS computation, was shown in [Pill
and Quaritsch, 2015].
Definition 3. Let succL(H) ⊆ succ(H) be the subset of
immediate successors H ′ (Def. 2) of H such that the other
possible immediate predecessors H∗ of H ′ are only to the
left of H according to the additional order for the hypothe-
ses with cardinality |H| = |H∗|, i.e. bin(H∗) > bin(H).
Let succR(H) = succ(H) \ succL(H).

In the Hasse diagram in Fig. 1, the hypotheses in
succL(H) are connected to H with solid lines, while those
in succR(H) are connected via dashed lines.
Theorem 1. Let H ′ be a hypothesis in succL(H) for some
hypothesis H (as of Def. 3). The binary representation
bin(H ′) of such a H ′ can only be obtained by switching
a bit with index k > j in bin(H), such that j is the index
of the left-most bit assigned 1 in bin(H), counting starting
with 0 at the least significant bit (LSB), the most significant
bit (MSB) having index |MN | − 1.

Proof. (Sketch) We know that the binary representation of
any immediate successor of H is obtained by switching a
bit assigned 0 in bin(H) (as |H ′| = |H|+ 1 and H ⊂ H ′).
Now let i be the index of the right-most bit assigned 1 in
bin(H), and k the index of the bit (assigned 0) we want to
switch. Since the bits i and j in bin(H) are assigned 1, we
obviously have k 6= i and k 6= j (switching those bits cannot
lead to any H ′ such that |H ′| = |H|+ 1).

Now, if we switch the bit indexed k for some k < i, then
there is some hypothesis H∗ to the right of H which is also
an immediate predecessor of H ′. This follows from Corol-
laries 1 and 3, and is in contradiction with the definition of
succL(H).

If we switch some bit assigned 0 such that i < k < j,
then there is also some hypothesis H∗ to the right of H that
is an immediate predecessor of H ′. While it is more difficult
to see, this follows from the same corollaries. In particular,

a b c

a,b

a,b,c

a,c a,d

Ø

d

b,c b,d

a,b,d a,c,d b,c,d

a,b,c,d

c,d

0000

1010

0100 0010 0001

1100

1000

1001 0110 0101 0011

1110 1101 1011 0111

1111

Figure 1: Hasse diagram forH for MN = {a, b, c, d}

there is some hypothesis H∗ such that bit k is 1 but bit j is 0.
We then have bin(H∗) < bin(H), which would contradict
the definition of succL(H).

Now, if we switch a bit of index k > j, no hypothe-
sis H+ to the right of H (bin(H+) < bin(H)) can have
H ′ as an immediate successor, since any immediate prede-
cessor of H ′ other than H is bound to have the bit with
index k assigned 1 (due to Corollary 3). Then, by defini-
tion, any immediate predecessor H∗ of H ′ other than H ,
where bin(H ′) has been obtained by switching a bit with
index k in bin(H), is necessarily to the left of H , that is,
bin(H∗) > bin(H).

Corollary 4. From the proof of Theorem 1, it directly fol-
lows that succL(H) = ∅ if j = |MN | − 1.

Corollary 5. Among the predecessors of a hypothesis H ′,
there is exactly one immediate predecessor H such that
H ′ ∈ succL(H).

Corollary 6. Due to Corollary 5,H can be constructed via
iteratively computing succL(H) starting with the ∅ hypoth-
esis. Furthermore, from the same corollary it follows that
there is exactly one (construction) path via succL for any
H ∈ H.

Theorem 2. The binary representation of each hypothesis
H ′ to the left of H such that succ(H ′) ∩ succL(H) 6= ∅
is obtained by switching some bit assigned 0 (with index j)
to the left of the left-most bit assigned 1 in bin(H) (with
index k) and switching one of the bits originally assigned 1
in bin(H) with index l ≤ k (counting starting at the LSB
with 0).

Proof. It is easy to see that |H ′| = |H|, and that the Ham-
ming distance between the two hypotheses is 2 (only the
bits indexed j and l are different). In the spirit of Corol-
lary 3, H and H ′ thus share a common immediate succes-
sor H∗ = H ′ ∪H , where bin(H∗) = bin(H) OR bin(H ′),
such that, compared to bin(H), bin(H∗) has assigned 1 to
some bit of index j > k and thus is in succL(H), as of
Theorem 1.

Let us then assume that we traverseH iteratively, layer by
layer, in order of ascending cardinality, and let us check the

individual hypotheses for their validity. A hypothesis H is
valid if an oracle (invoked as check(H)) states so (by return-
ing value true). At any moment we assume that there are
two sequences, current and next, that are meant to include
hypotheses belonging to the current and next layer of the
hypothesis space, respectively, where such hypotheses are
ordered based on their binary representations, as explained
above. Let us assume that the current layer is that inherent
to cardinality i > 0, hence sequence current includes the
hypotheses that have been generated for this layer in the pre-
vious iteration (at the first iteration current includes just the
top layer hypothesis, the only one with cardinality 0). At the
beginning of the new iteration, sequence next is empty. The
new iteration has to process all the hypotheses in current,
from left to right, in order to isolate among them the valid
ones and generate the hypotheses relevant to the next layer.
Each hypothesis H is checked in order to find out whether it
is valid or not. If it is, it is added to the (initially empty) set
of most preferred valid hypotheses, H+, and removed from
current.

If H is invalid, the relevant hypotheses in succL(H) are
generated (in the usual order based on their binary repre-
sentations) and merged in sequence next in such a way as
to preserve its descending order of the binary representa-
tions. Since we want to prune the hypothesis space so as
to avoid exploring portions of H that include only hypothe-
ses that are less preferable than those already saved in H+,
if hypothesis H is invalid, only its immediate successors in
succL(H) that have all invalid immediate predecessors are
generated (via Theorem 1). This way we ensure that we ob-
tain the most preferred valid hypotheses only, without the
need of having to perform any subset-checks in the set H+

of already obtained ones. Ascertaining whether all the im-
mediate predecessors of a hypothesis H ′ ∈ succL(H) are
invalid is easy as such immediate predecessors are necessar-
ily to the left of H; hence, they have been processed before
H and, in case they are invalid, they have not been removed
from current. Via Theorem 2, we can produce their binary
representations, therefore we can look for them in current,
starting from the hypothesis preceding H and going left.

Algorithm 1 above implements these concepts and uses
the function given by Algorithm 2 for generating the rel-

Algorithm 1 ExploringH and generatingH+.
Requires: check(H) — a function to check the validity of

hypothesis H
Requires: D — the domain of the hypothesis spaceH

1: procedure EXPLOREH(D):
2: H+ ← ∅
3: current ← < ∅ > — top layer hypothesis
4: while current 6=<> do
5: next ← <> — empty sequence
6: for all H ∈ current from left to right do
7: if check(H) then
8: H+ ←H+ ∪ {H}
9: remove H from current

10: else
11: succ′L ← genChildren(H , current, D)
12: next ← next⊕ succ′L
13: current ← next — next layer

returnH+

evant H ′ ∈ succL(H). (Dyadic operator ‘⊕’ merges the
operand sequences, which are in descending order, into one
sequence, in descending order. Dyadic operator ‘+’, as ap-
plied to sequences, appends the second operand sequence to
the first operand one.)

Theorem 3. Algorithm 1 for traversing H and generating
H+ ⊂ H, the set of most preferred valid hypotheses as of
Def. 2, is sound and complete.

Proof. (sketch) Alg. 1 starts the exploration from the top
layer, containing just the empty set hypothesis (line 3), and
it processes a layer of H at each iteration of the while loop
(line 4). It deals differently with a valid hypothesis H (lines
8-9) and with an invalid one (lines 11-12). Any valid hy-
pothesis is ruled out for further exploration, and none of
its successors is generated. Since each hypothesis added to
the (initially empty) set of solutions H+ is valid, as it has
been stated by the oracle (line 7), and it is subset minimal
thanks to the exploration order, this ensures that the algo-
rithm is sound. For each invalid hypothesis, the sequence of
hypotheses succ′L is generated by Alg. 2. Let us assume that
the call of Alg. 2 at line 11 of Alg. 1 returns the (properly
ordered) sequence containing all and only the hypotheses
in succL(H) whose immediate predecessors are all invalid.
That is, the content of succ′L is a subset of succL(H) that
does not contain any hypothesis H ′ ∈ succL(H) that is less
preferable than some hypothesis Ĥ ∈ H+. We do not need
to traverse this space, it cannot lead to any H̃ ∈ H+ since
this H̃ would be less preferable than some other Ĥ ∈ H+,
which is a contradiction. Hence, the traversal of H for gen-
eratingH+, which terminates when no next level hypothesis
has been produced, is complete.

The proof above relevant to Alg. 1 assumes that Alg. 2
is in turn sound and complete. This is what is (sketchily)
proven in the following. The expected output of Alg. 2 is the
(initially empty) sequence succ′L of all and only the immedi-
ate successors in succL(H) (where H is an invalid hypothe-
sis) whose immediate predecessors are all invalid. Lines 3-7
manage the case when H is the empty hypothesis, where all
the immediate successors have to be generated since all of
them fall in succL(H) and their only immediate predecessor
is H . Each iteration of the loop at line 4 generates a new im-
mediate successor H ′, according to the order from right to

Algorithm 2 Generating immediate successors.
Requires: H — a hypothesis
Requires: current — the sequence of hypotheses on the

current layer ofH as it is after H has been checked
Requires: D — the domain of the hypothesis spaceH

1: procedure GENCHILDREN(H , current, D):
2: succ′L ← <> — empty sequence
3: if H = ∅ then
4: for j ← 0 to |D| − 1 do
5: bin(H ′) ← bin(H)
6: bin(H ′)[j] ← 1
7: succ′L ← < H ′ > +succ′L
8: else
9: pred ← pred2(H, current)

10: k ← index of left-most 1 in bin(H)
11: h ← index of right-most 1 in bin(H)
12: for l ← k + 1 to |D| − 1 do
13: if pred 6= NIL then
14: bin(H ′) ← bin(H)
15: bin(H ′)[l] ← 1 — successor in succL
16: allfound ← true
17: for n ← k downto h do
18: if bin(H)[n] = 1 then
19: bin(H∗) ← bin(H)
20: bin(H∗)[n] ← 0
21: if pred 6= H∗ then
22: allfound ← false
23: bin(HF)← bin(H ′)
24: bin(HF)[h]← 0
25: while pred 6= NIL and
26: bin(pred) ≤ bin(HF)) do
27: pred ←
28: pred2(H, current)

29: break
30: else
31: pred ← pred2(H, current)

32: if allfound then
33: succ′L ← < H ′ > +succ′L

return succ′L

left: this is the reason for H ′ becomes the head of sequence
succ′L (line 7). Since each H ′ is an immediate successor of
H (according to Definition 2) and all immediate successors
are encompassed, this case is sound and complete.

Lines 8-33 manage the case when H is an (invalid)
hypothesis on a layer that is not the top one. Function
pred2(H, current) is assumed to return the closer hypoth-
esis to the left of the ‘cursor’ position in current (which is
initially the position of H) whose Hamming distance from
H is 2 (since, based on Corollary 3, two hypotheses can
share an immediate successor only if the Hamming distance
between them is 2). Such hypothesis is assigned to vari-
able pred. The reason for identifying a hypothesis that is
placed to the left of H is that all the hypotheses that share
with H a successor in succL(H) are to the left of H (ac-
cording to Definition 3). Each iteration in the for loop at
line 12 makes something just in case the value of variable
pred is not NIL, that is, there is still a hypothesis to the left
of H that can share a successor with H (line 13). Such an
iteration generates (by exploiting Theorem 1) a hypothesis
H ′ ∈ succL(H), according to the order from right to left.

Then, it sets to true the Boolean variable allfound, which is
expected to keep on being true only in case all the immedi-
ate predecessors of H ′ are in current, to the left of H . Based
on Theorem 2, the inner for loop at line 17, at each iteration
generates (according to an order from right to left) a hypoth-
esis H∗ to the left of H that is an immediate predecessor of
H ′. If (line 21) hypothesis pred does not equal H∗, this
means that H∗ is missing in current. In this case the value
of variable allfound is changed to false (line 22); any imme-
diate predecessors of H ′ in current is skipped, and variable
pred is updated to the closer hypothesis (moving the cursor
on the left) that is not a predecessor of H ′, if any (while loop
at lines 25-28); then, the inner loop (line 29) is exited. If,
instead, hypothesis pred equals H∗ (line 30), pred is sim-
ply updated to the closer hypothesis to the left of the cursor
whose Hamming distance w.r.t. H is 2, and a new iteration
of the loop at line 17 is performed. When either this loop
has been exited forcibly (line 29) or all its iterations have
finished, if allfound is still true, hypothesis H ′ becomes the
head of sequence succ′L. Since H ′ is certainly an immedi-
ate successors in succL(H) whose immediate predecessors
are all invalid, the algorithm is sound. The algorithm termi-
nates when all the hypotheses in succL(H) have been en-
compassed by the cycle at line 12, therefore the algorithm is
complete.

Algorithm 1 is anytime in that, at whichever time the run-
ning process is halted, set H+ ⊆ H, computed so far, in-
cludes indeed only MHSs. If the algorithm is not halted,
termination is guaranteed as the hypothesis space is finite,
and it returns all (and only) the valid hypotheses that are
preferable under subset inclusion. This is indeed a template
algorithm (or engine) that can be exploited for solving a va-
riety of problems that require the exploration of the hypoth-
esis space under the considered preference relation. Specif-
ically, it can be adopted to solve any instance of the MHS
problem.

Corollary 7. Given a MHS problem instance as of Def. 1,
Algorithm 1 can be used to compute the MHSs with the fol-
lowing inputs:

• function check(H) verifying whether H is indeed a hit-
ting set;

• the domain ofH for the considered instance, this being
D = MN .

Algorithm 1 can provide the means also for solving in-
stances of a distributed MHS problem, as defined here be-
low.

Definition 4. Let C be a finite collection of finite sets Ci,
each including all (and only) the MHSs relevant to a (non-
given) finite collectionNi of finite sets that contain elements
in the domain M . The problem of finding all the MHSs for
the (non-given) collection N =

⋃
iNi is referred to as the

distributed MHS problem. Each MHS of N can include
only elements occurring in N , hence the domain can be re-
stricted to MN =

⋃
i

⋃
j Nj where Nj ∈ Ni.

It is easy to see that the search space of the distributed
MHS problem is the same as for the (monolithic) MHS
problem, and that the preference relation that has been
adopted (subset containment) is appropriate also for the new
problem. However, while it is easy to fancy an oracle for
the MHS problem (for instance, given the hypothesis H to
check, the oracle can compute the intersection of H with

each set in the considered collection and return true if no
intersection is empty), it is not straightforward to envisage
one for the distributed MHS problem since N is unknown.
A deeper insight in the distributed MHS problem is there-
fore needed.

Theorem 4. Given a distributed MHS problem, a hypoth-
esis H ∈ H is a hitting set of (the non-given) collection
N =

⋃
iNi if, and only if, for each Ci ∈ C, there exists

a (MHS of the non-given collection Ni) Hsi ∈ Ci such that
H ∈ {Hsi} ∪ succ∗(Hsi).

Proof. (sketch) Let us assume that collection N includes k
elements.

(→) Let us assume that for each i ∈ [1..k], there
exists a (MHS of collection Ni) Hsi ∈ Ci such that
H ∈ {Hsi} ∪ succ∗(Hsi). Then, for each Ni, H
is either a MHS (H = Hsi) or a superset of a MHS
(H ∈ succ∗(Hsi)), hence H hits all the sets of collection
Ni. Since it is so for all the k collections Ni, H is a hitting
set of their union N .

(←) Let us assume that H is a hitting set of N , hence it
is a hitting set of each collection Ni ∈ N . This means that,
for each i ∈ [1..k], H is either a MHS ofNi or a superset of
a MHS of Ni, which implies that, for each i ∈ [1..k], there
exists a Hsi ∈ Ci s.t. H ∈ {Hsi} ∪ succ∗(Hsi).

Definition 5. Assuming that collection N includes k ele-
ments Ni, the sequence of all the Hsi mentioned in Theo-
rem 4, as ordered according to the value of i ∈ [1..k], is a
justification of the hitting set H of N .

The top-down exploration of the hypothesis space per-
formed by Algorithm 1 guarantees to isolate the most pre-
ferred valid hypotheses according to the subset containment
preference relation. In the distributed MHS problem, a hy-
pothesis is valid if it is provided with a justification.

Corollary 8. Given a distributed MHS problem instance as
of Def. 4, Algorithm 1 can be used to compute the MHSs
with the following inputs:

• function check(H) verifying whether H is indeed a hit-
ting set of N ; based on Theorem 4, this amounts to
finding out whether H is provided with a justification
(see Definition 5);

• the domain ofH for the considered instance, this being
D = MN .

4 Related Work and Conclusions
Solving the MHS problem is of interest for many appli-
cations, which has resulted in the availability of a selec-
tion of corresponding algorithms [Eiter et al., 2008]. In
a diagnostic context, de Kleer and Williams [de Kleer and
Williams, 1987] as well as Reiter [Reiter, 1987] showed the
relevance of MHSs and also presented some conflict-based
solutions that were extended later on [Greiner et al., 1989;
Wotawa, 2001; Pill and Quaritsch, 2015] and comple-
mented by approximative heuristic approaches [Abreu and
van Gemund, 2009] and distributed / parallelized ones [Car-
doso and Abreu, 2013; Jannach et al., 2015].

Rather than presenting another solution whose search is
based on the sets we want to hit (or some corresponding
heuristic), in this paper we have proposed a method that is
based on the exponential hypothesis space H as given by
the powerset of the union of the elements in the sets that we

want to hit (or some domain). We have shown how to avoid
exploring hypotheses that are less preferable than some hy-
pothesis already proven to be valid. We have furthermore
shown a way to explore H efficiently, without constructing
or investigating any hypothesis twice, and focusing on rel-
evant data only. Our algorithm ensures the minimality of
the reported MHSs by construction, without having to per-
form subset-checks on the final outputs, which are instead
needed by other performant solutions [Pill et al., 2011] like
the Boolean approach at MHS computation [Lin and Jiang,
2003; Pill and Quaritsch, 2012].

Our research was inspired by the performance [Nica et
al., 2013] of diagnosis methods that compute diagnoses
directly from satisfying assignments to some special SAT
problem [Metodi et al., 2012; Feldman et al., 2010], and
the fact that we did not see such performance for a SAT en-
coding of MHS problems [Pill et al., 2016]. The algorithm
shown in this paper is a first step towards efficiently explor-
ing the MHS search space, based on the hypothesis space
rather than the “conflicts”. Furthermore, it is also a step to-
wards corresponding diagnosis solutions. In particular, in
line with Corollary 7, we can easily search for diagnoses if
function check(H) verifies whether a diagnosis H makes the
observations compliant with the system model; this is actu-
ally the point in [Ceriani and Zanella, 2014]. The advan-
tage of such an exploration, if compared to conflict-based
searches, is that no solver (SAT-, constraint-, ...) is required,
instead we need only a function that is able to judge the hy-
pothesis (similar to a test oracle).

A direction for future work stems from the direct SAT so-
lutions for diagnosis problems tending in their search more
towards our exploration strategy, as discussed in the intro-
duction. By exploiting our illustrated strategy, we aim to
develop corresponding (e.g. SAT-based) solutions that are
specifically tailored towards diagnosis purposes, rather than
relying on a general purpose strategy solver.

An important future step for these ideas will be an exper-
imental evaluation of the proposed initial search strategy for
both (monolithic and distributed) MHS and MBD problems.
Such an evaluation will allow us to optimize the depicted
developments.

Acknowledgments
The work reported in this paper was supported in part by
the European Commission under FP-7 agreement number
608770 (project “eDAS”).

References
[Abreu and van Gemund, 2009] R. Abreu and A. van

Gemund. A low-cost approximate minimal hitting set al-
gorithm and its application to model-based diagnosis. In
8th Symposium on Abstraction Reformulation, and Ap-
proximation (SARA), July 2009.

[Cardoso and Abreu, 2013] N. Cardoso and R. Abreu.
MHS2: A map-reduce heuristic-driven minimal hitting
set search algorithm. In Multicore Software Engineer-
ing, Performance, and Tools - International Conference
MUSEPAT, pages 25–36, 2013.

[Ceriani and Zanella, 2014] L. Ceriani and M. Zanella.
Model-based diagnosis and generation of hypothesis
space via AI planning. In 25th Int. Workshop on the Prin-
ciples of Diagnosis (DX-14), 2014.

[de Kleer and Williams, 1987] J. de Kleer and B. C.
Williams. Diagnosing multiple faults. Artificial Intel-
ligence, 32(1):97–130, 1987.

[Eiter et al., 2008] T. Eiter, K. Makino, and G. Gottlob.
Computational aspects of monotone dualization: A brief
survey. Discrete Applied Mathematics, 156(11):2035–
2049, June 2008.

[Feldman et al., 2010] A. Feldman, G. Provan, J. de Kleer,
S. Robert, and A. van Gemund. Solving model-based di-
agnosis problems with Max-SAT solvers and vice versa.
In 21st Int. Workshop on Principles of Diagnosis (DX-
10), 2010.

[Greiner et al., 1989] R. Greiner, B. A. Smith, and R. W.
Wilkerson. A correction to the algorithm in Reiter’s the-
ory of diagnosis. Artif. Intelligence, 41(1):79–88, 1989.

[Jannach et al., 2015] D. Jannach, T. Schmitz, and K. M.
Shchekotykhin. Parallelized hitting set computation for
model-based diagnosis. In 29th AAAI Conference on Ar-
tificial Intelligence, pages 1503–1510, 2015.

[Lin and Jiang, 2003] L. Lin and Y. Jiang. The computation
of hitting sets: review and new algorithms. Information
Processing Letters, 86:177–184, May 2003.

[Metodi et al., 2012] A. Metodi, R. Stern, M. Kalech,
and M. Codish. Compiling model-based diagnosis to
Boolean satisfaction. In AAAI Conference on Artificial
Intelligence, pages 793–799, 2012.

[Moskewicz et al., 2001] M. W. Moskewicz, C. F. Madi-
gan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineer-
ing an efficient SAT solver. In 38th Annual Design Au-
tomation Conference (DAC), pages 530–535, 2001.

[Nica et al., 2013] I. Nica, I. Pill, T. Quaritsch, and
F. Wotawa. The route to success - a performance com-
parison of diagnosis algorithms. In Int. Joint Conf. on
Artificial Intelligence (IJCAI), pages 1039–1045, 2013.

[Pill and Quaritsch, 2012] I. Pill and T. Quaritsch. Opti-
mizations for the boolean approach to computing mini-
mal hitting sets. In 20th European Conference on Artifi-
cial Intelligence (ECAI), pages 648–653, 2012.

[Pill and Quaritsch, 2015] I. Pill and T. Quaritsch. RC-tree:
A variant avoiding all the redundancy in Reiter’s minimal
hitting set algorithm. In 2015 IEEE International Sym-
posium on Software Reliability Engineering Workshops
(ISSREW), pages 78–84, 2015.

[Pill et al., 2011] I. Pill, T. Quaritsch, and F. Wotawa. From
conflicts to diagnoses: An empirical evaluation of mini-
mal hitting set algorithms. In 22nd Int. Workshop on the
Principles of Diagnosis (DX), pages 203–210, 2011.

[Pill et al., 2016] Ingo Pill, Thomas Quaritsch, and Franz
Wotawa. On the Practical Performance of Minimal Hit-
ting Set Algorithms from a Diagnostic Perspective. In-
ternational Journal of Prognostics and Health Manage-
ment, 7(2), 2016. ISSN2153-2648, 2016 010.

[Reiter, 1987] R. Reiter. A theory of diagnosis from first
principles. Artificial Intelligence, 32(1):57–95, 1987.

[Wotawa, 2001] F. Wotawa. A variant of Reiter’s hitting-set
algorithm. Information Proc. Letters, 79:45–51, 2001.

