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Abstract

Failure diagnosis in partially observable model-
based Discrete Event Systems requires modelling
failures as unobservable events within the system.
Representing failures as events is not always real-
istic. For example, some classes of failure are in
form of violations of constraints such as Service
Level Agreement (SLA) and Quality of Service
(QoS). To model such failures, we need to modify
the plant model which is not always acceptable.
Firstly, this may make the models large. Secondly,
adding extra transitions is not always preferable
from engineers’ prospective as every modification
of the constraint will modify the model of the
plant. This paper applies Integer Fourier-Motzkin
Elimination (IFME) approach to address this is-
sue. Since the constraints and their violations can
be written as inequalities, we show that starting
from a Petri net two sets of inequalities (diag-
noser) are obtained. These sets are used to judge
whether an observed sequence may satisfy (vio-
late) these inequalities.

1 Introduction
Automata and Petri nets are two common modelling lan-
guages used in model-based diagnosis of failure in Dis-
crete Event Systems (DESs) [Sampath et al.1995, Genc
and Lafortune2007, Jiroveanu et al.2008, Basile et al.2008,
Dotoli et al.2009,Cabasino et al.2010]. A common practice
is to represent failures as a part of the plant’s model. For
example, in Automata and Petri nets models of the plants,
we create unobservable transitions for representing failures.
However, this style of the modelling of failures is not al-
ways realistic. Sometimes failure is created as a result of
violation of Service Level Agreement (SLA) or Quality of
Service (QoS). For example, consider the so-called Right-
First Time (RFT) failure [Alodib and Bordbar2009] which is
of interest to telecommunication services. Right-First Time
(RFT) failure occurs when a process fails to complete a task
First-Time and it is forced to repeat a part of the task again.
This happens when one or more tasks are repeated, indicat-
ing incorrect execution of the task in the first place. Such
occurrences of failure may result in violations of Service
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Level Agreement (SLA), causing financial penalties or cus-
tomer dissatisfaction.

If the failure is expressed as a constraint, there is no event
in the system that represents failure. One can argue that
if a failure is caused by a violation of a constraint, we can
always modify the model of the plant to include extra tran-
sitions (or/and states) to model the occurrences of the fail-
ure. This would require alterations of the models which is,
in our experience, not always acceptable by the engineers.
Since the SLA and QoS requirements change over time, if
violations of such constraints are modelled by adding tran-
sitions, the model of the plant must change whenever such
constraints are modified. In addition, in some cases, adding
extra events or transitions may result in cumbersome mod-
els. To model RFT failure, potentially duplicates of many
transitions must be created to mark undesirable repetition
of the multiple events. This can result in a serious distor-
tion of an originally elegant design, resulting in a large and
complex model.

In [Al-Ajeli and Bordbar2016], we introduced a new ap-
proach to address the problem of failures diagnosis. Con-
sidering failures as events in the plant model, this approach
uses Integer Fourier-Motzkin Elimination (IFME) method.
Also, the occurrence of failures is formulated as an inequal-
ity. On the other hand, the normal state can be expressed
as an inequality too. We showed that the question of creat-
ing the diagnoser to detect failures in Petri nets can be con-
verted to the same question of projecting sets of inequalities
on variables representing the observable transitions. The in-
troduced approach proceeds as follows. We start with an
acyclic Petri net N . Then, two inequalities are individually
added to E. These inequalities express two cases; failure
occurs case and normal case. Applying IFME method to the
resulting sets creates two new sets of inequalities by elim-
inating the variables corresponding to unobservable transi-
tions. These sets are then used as a diagnoser.

The contributions of this paper consist in extending the
previous work introduced in [Al-Ajeli and Bordbar2016]
beyond acyclic Petri nets. Then, applying the extended ap-
proach using IFME method to diagnose violations of con-
straints. Motivated by the use of SLA and QoS, we shall
model failure (violation of constraints) as an inequality.
Namely, for a Petri net N and a constraint φ which, if vio-
lated, a failure has happened, we apply the same procedure
described above in case of failures as events. In which case,
the model of plant will not be modified neither to model
these failures as events nor when constraints change.

This paper is organized as follows. Section 2 presents



preliminaries including Petri nets’ theory, diagnosis of fail-
ures in partially observable DES, Fourier-Motzkin Elimina-
tion method and using this method for failures diagnosis.
Failures as violations of constraints in addition to a running
example are introduced in section 3. Following that, using
IFME method to diagnose occurrences of violations of con-
straints is shown. We end this paper by related works and
conclusions.

2 Preliminaries
2.1 Petri nets
A Petri net [Murata1989] is defined as a four tuple N =
(P,T, pre, post), where P and T are two nonempty finite
sets of places and transitions, respectively. We denote
m = |P| and n = |T | as the number of places and transitions.
pre : P×T → N and post : P×T → N. For a given tran-
sition t, an input (output) place of t is a place p such that
pre(p, t) (post(p, t)) is positive, respectively. A = [ai j] is
an m× n matrix of integers called incidence matrix, where
ai j = post(p, t)− pre(p, t) assuming that the set of places
are ordered to correspond the coordinates of the matrix. In
this paper N = {0,1,2, . . .} is the set of non-negative inte-
gers, Z is the set of all integers and R is the set of real num-
bers. We write •t (t•) for the set of all input (output) places
of a transition t, respectively. Also, we write •p (p•) for the
set of all input (output) transitions of a place p, respectively.
A pair of a place p and transition t is called a self-loop if p
is both an input and output place of t.

A state of a Petri net, known as a marking, is represented
as M : P→N capturing the number of tokens in each place.
We sometimes represent a marking as an m× 1 matrix of
non-negative integers. A transition t is enabled at a marking
M if for each M≥ pre(., t), where pre(., t) is an n×1 matrix
with coordinates pre(p, t) for p ∈ P. An enabled transition
can fire resulting in a new marking M′, denoted by M t→
M′, where M′ = M+A(., t). A sequence of transitions σ =
t1 . . . tk of T is called enabled at a marking M, if there are
marking M1, . . . ,Mk so that M

t1→M1
t2→M2 · · ·

tk→Mk. In this
case, we write M σ→Mk and refer to Mk as a state Reachable
from M and σ is the firing sequence. We write R(N , M)
for the set of all reachable states from M. The initial state of
the system is represented by an initial marking M0. We will
write (N , M0) for a Petri net with its initial marking M0.

The set of all finite-length strings of the transitions in T
is denoted by T ∗ and is called the Kleene-closure of T. As
a result, members of T ∗ are created from concatenation of
finite number of elements of T. In particular, T ∗ contains the
empty string ε, so that tε = εt = t for all t ∈ T. Every subset
of T ∗ is called a language on the alphabet T . Suppose that
we have a sequence σ of (N , M0), then the Parikh vector # :
T ∗→Nn is a map which assigns to every sequence σ a map
#(σ) that produces the number of firing each transition in
σ . In other words, for #(σ) : T → N, #(σ)(t) is the number
of occurrence of t ∈ T within the sequence σ . Sometimes,
we write #(t,σ) to represent the number of the occurrences
of t in σ .

The set of sequences of transitions resulting in a reachable
marking is called the Language of the Petri net and is de-
noted by L(N , M0) i.e. L(N , M0) = {σ ∈ T ∗ | ∃M M0

σ→
M}.

Suppose that a destination marking M is reachable from
M0 in a Petri net N through a sequence σ , we can then find

M using the following state equation:

M = M0 +Ax≥~0, (1)

where A is the incidence matrix of N , and x ∈ Nn is a n-
dimensional column vector with x = (x1, . . . ,xn) and xi =
#(ti,σ) for ti ∈ T . Then, for any firing sequence σ of N ,
there exists x = #(σ) satisfying (1). The converse is not
always true. In some cases, as shown in Lemma 1 below,
the converse holds too.

In what follows, we describe this lemma and the neces-
sary definitions to establish it as presented in [Tsuji and Mu-
rata1993].

Definition 1. [Tsuji and Murata1993] Let α = (α1, . . . ,αn)
be a solution of the state equation for a Petri net (N ,M0)
with a destination marking M. Then, the subnet Nα is called
the firing count subnet with respect to α where each transi-
tion ti in Nα is such that αi > 0 together with its input and
output places and its connecting arcs. M0α denotes the sub-
vector of M0 for places in Nα .

A directed circuit in a Petri net is a closed directed path
from one node (place or transition) back to itself. A Petri
net having no directed circuits is called an acyclic Petri net.

Definition 2. [Tsuji and Murata1993] With respect to a
directed circuit d in a Petri net, let Pd denotes the set
of places on d and Td denotes the set of transitions on
d. Then T out

d = P•d \ Td is called the set of outlet transi-
tions and T in

d =• Pd \Td the set of inlet transitions. Where
•Pd =

⋃
p∈Pd

(•p) and P•d =
⋃

p∈Pd
(p•).

Definition 3. [Tsuji and Murata1993] With respect to a
directed circuit d in a Petri net, the handles are defined as
follows:

• A PT-handle is a directed path h from a place to a tran-
sition such that both belong to d.

• A TP-handle is a directed path h from a transition to a
place such that both belong to d.

where h and d share exactly two common nodes, the initial
and terminal nodes of h.

Definition 4. [Tsuji and Murata1993] A PT-handle (TP-
handle) h with respect to directed circuit d is said to be
token-free if there are no tokens in those places in h− (h∩
d).

Lemma 1. [Tsuji and Murata1993] In a Petri net (N ,M0),
a marking M is reachable from M0 if there exists a nonneg-
ative integer solution α of its state equation satisfying the
following two conditions:

• For each directed circuit d having k token-free PT-
handles, k = 0,1,2, . . . , in the subnet (Nα ,M0α ), there
is at least one inlet transition, or at least k+1 tokens.

• For each directed circuit d having k′ token-free TP-
handles, k′ = 0,1,2, . . . , in the subnet (Nα ,Mα ), there
is at least one inlet transition, or at least k′+1 tokens.

Proof. See [Tsuji and Murata1993] for the proof.

The class of acyclic Petri nets is a special case and satis-
fies the conditions in Lemma 1.



2.2 Diagnosis of Failure Events in Partially
Observable DES

Consider a Petri net (N , M0) with a set of transitions
T. Suppose that T is partitioned into two sets: observ-
able transitions To and unobservable transitions Tu. We fur-
ther assume that failures are unobservable transitions, i.e.
Tf ⊆ Tu, in which Tf is the set of transitions which are
modelling occurrences of failure. Consider the projection
function π : T → To ∪ {ε} that maps unobservable transi-
tions to the empty string ε, i.e. π(t) = ε for t ∈ Tu while,
π(t) = t for t ∈ To. The projection function π can be ex-
tended to the Kleene-closure of T by π : T ∗→ (To ∪{ε})∗
where for each sequence of transitions σ and each transi-
tion t, π(σt) = π(σ)π(t). We assume π(ε) = ε and that
π(tε) = π(εt) = ε for each t ∈ Tu. Denote by s = π(σ)
the observed sequence corresponding to a given sequence
σ ∈ T ∗.

Assuming that t f is a failure transition, then the failure
occurrence can be written as ¬c := x f > 0. Also, no occur-
rence of failure can be expressed as c := x f ≤ 0. The set
To represents all the events that are observable in the sys-
tems, such as events which can be recognised via a sensor.
Hence, in every execution of events σ , a sequence of events
s = π(σ) from To can be observed. A diagnoser uses such
information to identify a diagnosis state to be one of the fol-
lowing [Al-Ajeli and Bordbar2016]: 1) Normal state - when
all sequences in L(N ,M0) having the same s satisfy c, 2)
Faulty state is obtained when all sequences in L(N ,M0)
with the same s satisfy ¬c and 3) Uncertain state in which
there are two sequences having the same s but one of them
satisfies c and the other satisfies ¬c.

This definition of the diagnoser states extends their defi-
nition in [Cabasino et al.2009] which is itself an extension
of the definition in [Sampath et al.1995].

2.3 Fourier-Motzkin Elimination Method
Fourier-Motzkin elimination (FME) method has originally
been suggested for solving a set of linear inequalities
and also to establish if the set is solvable [Kuhn1956,
Kohler1967, Dantzig1972, Duffin1974]. In other words,
given a matrix A ∈ Rm×n and vector b ∈ Rm, FME tests if
a set of inequalities E := Ax ≤ b, where the vector of vari-
ables x = (x1,x2, . . . ,xn) ∈ Rn, has a solution. Then if there
exist a solution, FME will find it. For the sake of simplic-
ity, all entries in the last column of A are, without loss the
generality, assumed to be 0, +1 or -1. Then, the set E can be
rewritten as shown in (2). Thus the problem now is to solve
this set (the inequalities might need to be reordered first).

a′ix
′ ≤ bi, i = 1, . . . ,m1

a′jx
′− xn ≤ b j, j = m1 +1, . . . ,m2

a′kx′+ xn ≤ bk, k = m2 +1, . . . ,m

(2)

where x′ = {x1,x2, . . . xn−1}, i.e., the same set of vari-
ables without xn. Assume that l = max(a′jx

′− b j, j = m1 +

1, . . . ,m2) and u = min(bk−a′kx′,k = m2 +1, . . . ,m). Since
the last two lines of (2) are equivalent to l ≤ xn ≤ u, then the
variable xn can be eliminated. This yields the reduced set R
in (3) as an equivalent to the set E in (2):

a′ix
′ ≤ bi, i = 1, . . . ,m1

a′jx
′−b j ≤ bk−a′kx′, j = m1 +1, . . . ,m2,

k = m2 +1, . . . ,m

(3)

By repeating this process, we can successively eliminate
the last n− 1 variables xn,xn−1, . . . ,x2, and end up with a
set of inequalities in one variable x1 which is trivial. Note
that using this method in failure diagnosis, the process of
elimination stops when all variables corresponding to unob-
servable transitions are eliminated as explained later.

Theorem 1. [Duffin1974] Assume that the variables
xk+1, . . . ,xn have been eliminated in order by using FME
method described above from a set of linear inequalities
E. This results in the reduced set R. Then α1, . . . ,αk is a
solution of R iff there exists values αk+1, . . . ,αn such that
α1, . . . ,αk,αk+1, . . . ,αn is a solution of E.

Finally, the extension of the FME method described in
this section to cope with integer valued variables has been
reported in [Williams1976] and [Pugh1991]. For sake of
brevity, this extension is not included here.

2.4 Using IFME Approach to Diagnose Failures
In [Al-Ajeli and Bordbar2016], we introduced the notion of
using IFME method for failures diagnosis in partially ob-
servable DES modelled by Petri nets. Under the assumption
that the Petri nets are acyclic and have single failure, we
showed that the diagnoser can be expressed as two sets of
inequalities. These sets are derived from the state equations
of Petri nets, c and ¬c.

Based on the definition of the valuation described in
[Clarke et al.1999], we have presented the following defi-
nitions [Al-Ajeli and Bordbar2016].

Definition 5. Let x = (x1, . . . ,xn) be a set of variables. We
suppose that the variables range over N. A valuation ν for
x is a function that associates a value in N to each variable
xi in x.

Remark: In the light of Definition 5, given a sequence σ ∈
T ∗, Parikh vector #(σ) represents a valuation of x. In other
words, for each xi of x, xi = #(ti,σ), where i = 1,2, . . . ,n.

Definition 6. Suppose that e is an inequality of the
form a1x1 + · · · + anxn ≤ b in the variables set x =
(x1, . . . ,xn),xi ∈ N and a1, . . . ,an,b ∈ Z. Consider a valua-
tion ν as α1, . . . ,αn assigned to value x1, . . . ,xn respectively.
Then we write ν � e to say that the valuation ν satisfies the
inequality e if and only if a1α1 + · · ·+anαn ≤ b.

Definition 7. Suppose that we have a set of inequalities E =
{ei | 1 ≤ i ≤ d} where ei has the form of e in Definition 6.
Consider a valuation ν for the variables of the inequalities
in E. Then ν � E iff (ν � e1)∧(ν � e2)∧·· ·∧(ν � ed) (“∧”
is the conjunctive operator).

Now, the IFME approach for failures diagnosis can be
outlined as follows. Suppose that (N ,M0) is an acyclic
Petri net with the initial marking M0. Without any loss of
generality, suppose that we have renamed the transitions
of N such that the first k transitions are observable, i.e.,
To = {t1, t2, . . . , tk}. The remaining transitions are unobserv-
able, i.e. Tu = {tk+1, tk+2, . . . , tn}.

We further assume that the system has a single failure and
tn is the only failure transition of the system. We introduce
variables x1,x2, . . . ,xn representing the number of firing of
t1, t2, . . . , tn, respectively. Suppose that E := M0 +Ax ≥~0
represents the state equations, where x= (x1,x2, . . . ,xn). We
further assume that c is the inequality xn ≤ 0 and ¬c is the
negation of c, i.e., the inequality xn > 0. For each firing
sequence σ of (N ,M0), if σ contains tn, i.e., the failure



transition, then #(σ), the Parikh vector of σ , satisfies ¬c.
Conversely, for a firing sequence σ , if #(σ) satisfies c, then
σ has no the failure transition tn.

From an acyclic Petri net model, we first obtain a set of
inequalities E := M0 +Ax≥~0. Then, we create two sets of
inequalities E ∪{c} and E ∪{¬c}. Applying IFME method
simultaneously to both E ∪{c} and E ∪{¬c}, two reduced
sets, R and R′, are created by eliminating every variable cor-
responding to a transition in the set Tu. We use the reduced
sets of inequalities to diagnose failure occurrence of tn as
follows.

Theorem 2. Suppose that N is an acyclic Petri net with an
initial marking M0. Suppose that E is the set of inequalities
−Ax ≤ M0 created from the state equation of N . Assume
that T = To ∪ Tu, To = {t1, . . . , tk}, Tu = {tk+1, . . . , tn} and
tn is a failure transition. The vector of variables x1, . . . ,xn
corresponds to the number of firing the transitions t1, . . . , tn.
Assume also that c is the inequality xn≤ 0 and¬c is its nega-
tion. Suppose that the set of inequalities R and R′ are re-
spectively produced from applying of IFME to both E ∪{c}
and E ∪ {¬c} to eliminate all variables corresponding to
transitions in Tu. Then, for any given sequence of observ-
able events s = π(σ), where σ is a firing sequence in N

(M0
σ→M), if

1. #(s) 2 R, then the diagnosis state is Faulty.

2. #(s) 2 R′, then the diagnosis state is Normal.

3. #(s) � R and #(s) � R′, then the diagnosis state is Un-
certain.

4. #(s) 2 R and #(s) 2 R′, it is not possible to have this
case.

Proof. We address [Al-Ajeli and Bordbar2016] for the
proof.

3 Failures in Form of Violations of
Constraints

Some failures are not modelling as events in the plant of the
system but they represent a form of violations of constraints.
Service Level Agreement (SLA) and Quality of Service
(QoS) violations are examples of such failures. Many SLA
and QoS statements have been defined to restrict SLA and
QoS such as error rate, percentage of service availability and
the ratio of message loss in communication channel. These
statements are termed constraints within these agreements
whose violations represent failures. In effect, violation here
implies that tasks executed are going below the acceptable
level according to the agreement.
Example 1 [Alodib and Bordbar2009]: To describe the
problem that has motivated this paper, we shall make use of
a simplified business process used within a typical telecom-
munication company. Suppose the scenario that a domes-
tic customer telephones to report a malfunction such as the
broadband connection being slow. We refer to such prob-
lems and malfunctions as "tasks" or "jobs". The following
example describes a simplified business process from the ar-
rival of the job to its completion.

In Petri net of Fig.1, when the tasks arrive (firing of t1),
depending on the nature of the problem which is reported,
every task is allocated to one of the three Departments.
Within each Department, there are a few large and com-
plex workflows which we have (seriously) simplified to two

cases. Either the problem is resolved (transitions labelled R)
or the engineers discover that the allocated job can NOT be
resolved (transitions labelled N) within their Department.
This would be a case of wrong allocation of jobs and can
arise from a multitude of reasons, among them wrong in-
formation from the customers or wrong assignment of jobs
or the case that one fault triggers another. In the case that
the job is resolved, the Department declares that "Job Com-
pleted" by firing of t12, t13 or t14, which ultimately results
in the firing of t15 marking the "Completion of the (overall)
task." In case that a Department is not able to complete the
job (firing of t6, t8 or t10), further investigation is required.
As a result, a token is placed in p1 so that the job is re-
allocated by the Customer Service department. We assume
that transitions t1 and t15, which mark arrival and completion
of jobs are observable. In addition, transitions that mark ar-
rival of the jobs in each Department (t3, t4 and t5) are also
observable, as they are used by the Department to inform
the Customer of the progress of the job. For example if the
customer is accessing through a browser to make an online
report, he is informed that the relevant department will deal
with the problem. Observable transitions in Fig.1 are de-
picted by solid rectangles, while empty rectangles represent
unobservable transitions.

In the above example, firing of t6, t8 or t10 results in a
repetition of a chain of activities that indicates a wrong al-
location of jobs to the departments. Since the activities are
repeated, the job is not completed Right First Time (RFT).
In this case, we say RFT failure has happened. Right First
Time failures are becoming increasingly important in Tele-
com industry [Alodib and Bordbar2009]. Occurrence of a
RFT failure may result in unhappy customers, increases cost
of resolving the problems and may entail financial penalties.
As a result development of methods of discovery of RFT

t1(Arrival of a task)

p1

t2(Allocation of tasks)

p2

t4
Arrival of job

t3
Arrival of job

t5
Arrival of job

p3 p4 p5

t6
N

t7
R

t8
N

t9
R

t10
N

t11
R

p6 p7 p8

t12

Job completed

t13

Job completed

t14

Job completed

p9

t15(Completion of the task)

p10

Customer service

Department 1 Department 2 Department 3

Figure 1: A problem to Resolve System



failures so that remedial actions can be adopted is essential.
In addition, in large organisations such methods must be au-
tomated to allow dealing with large systems.

In the above example, the transition t2 marks allocation
of jobs and the transition t15 marks the completion of a job.
Ideally, to ensure no RFT failure, we wish that every allo-
cated job is completed. In other words, for each execution
sequence σ of the Petri net.

#(t2,σ) = #(t15,σ). (4)

If (4) happens, we have no RFT failure. However, it is
often not possible to completely eliminate the RFT failure.
As a result, the management sets Service Level Agreement
(SLA) such as the number of failures should be below a
value δ ≥ 0 to specify acceptable levels of failure. SLA
is satisfied iff for each execution sequence (5) is true.

#(t2,σ)−#(t15,σ)≤ δ . (5)

Petri net of Fig.1 represents a model of a plant and (5)
represents a constraint (a SLA), which if violated, a failure
has happened. Petri net of Fig.1 has no failure transitions.
As a result, existing failure diagnosis techniques can not be
directly applied. One can argue that, one must model fail-
ure by modifying the Petri net of Fig.1. This would mean
adding extra transitions and places to simulate violation of
(5). In our experience, this is not an easy task. In addition,
modifying Fig.1 may result in cumbersome and large Petri
nets which will be hard to understand. Thirdly, advocates
of modelling failure must modify his design as soon as the
SLA changes. As a result, there is a clear scope for extend-
ing existing fault diagnosis techniques in Petri nets for the
case that the failure is associated to a violation of constraints
such as SLA.

Violation of (5) can be represented as an inequality: Each
sequence σ in N that violates (5) satisfies (6). Hence if (5)
is evaluated to false, then (6) will be evaluated to true.

#(t2,σ)−#(t15,σ)> δ . (6)

Conversely, if σ satisfies (5), then (6) is evaluated to true.
Also, (6) can be rewritten as:

#(t15,σ)−#(t2,σ)≤−(δ +1). (7)

As (7) is an inequality, violations of constraints can be
expressed as inequalities. These inequalities can capture
the general form e in definition 6. For example, assum-
ing x2 = #(t2,σ),x15 = #(t15,σ), b = −(δ + 1) and the re-
maining coefficients equal to zero, then (7) corresponds to
e. Likewise, (5) corresponds to e.

A wide range of SLA and QoS statements can be ex-
pressed as inequalities. For example, consider the ratio
of message loss in communication channel. In this ex-
ample, let us assume that t1 represents sending of a mes-
sage to a channel and t2 represents arrival of the message
at the other end. It is required that the ratio of the loss be
#(t1,σ)
#(t2,σ) ≤

p
q which means q×#(t1,σ)− p×#(t2,σ)≤ 0. This

inequality represents the constraint whose violation, written
as q×#(t1,σ)− p×#(t2,σ)> 0, is seen as a failure, where
p
q > 1 and q 6= 0. Since these SLA and QoS statements and
its violations (seen as failures) can be written as inequalities,
IFME approach is suitable to detect such failures.

4 IFME Approach to Diagnose Violations of
Constraints

The purpose of this paper has two folds. First, we extend
our previous work in [Al-Ajeli and Bordbar2016] beyond
acyclic Petri nets supposing that the Petri net (N ,M0) is
such that the converse of its state equation is true and with
no self-loop. In other words, IFME approach can be applied
to the Petri nets such that for any solution x of the state
equation M0 + Ax = M, there is a run M0

σ→ M and x =
#(σ). For example, any Petri net satisfying the conditions
of Lemma 1 will be an example of such nets. Acyclic Petri
nets and also the Petri net of Fig. 1 represents examples of
these Petri nets. Second, we apply the results obtained to
diagnose failures which are NOT captured as events in the
model of the system.

Consider a Petri net N = (P,T, pre, post) with an ini-
tial marking M0. Also, consider that this Petri net has no
self-loop and that every solution of its state equations has
a sequence in L(N ,M0). The set of transitions of N is
such that T = {t1, t2, . . . , tn}. Suppose that T is partitioned
into two sets: observable transitions To and unobservable
transitions Tu. Notice there is no notion of failure transi-
tion. However, we assume that there exists a constraint, de-
noted φ , which if violated, a failure has happened. Thus,
a sequence of events σ for which #(σ) 2 φ contains a fail-
ure. Conversely, a given sequence σ contains no failure if
#(σ) � φ .

In this paper, we assume that the system has single con-
straint φ whose violation, denoted φ ′, is seen as a fail-
ure. Further, assume that φ := ∑

n
i=1 aixi ≤ b and ¬φ :=

∑
n
i=1 aixi > b, where x1, . . . ,xn corresponds to the number of

firing the transitions t1, . . . , tn and a1, . . . ,an,b∈Z. In effect,
the inequalities c and¬c, with one variable, are special cases
of inequalities φ and ¬φ , respectively. Thus the problem of
failures diagnosis in partially observable systems in which
failures are events can be considered as a special case of
the problem of violations of constraints diagnosis. Accord-
ingly, the diagnoser and diagnosis states previously defined
(see section 2.2) can be redefined as follows:
Definition 8. A diagnoser is a mapping that associates to
each observed sequence s, with respect to φ and ¬φ , one of
the following diagnosis states:

• Normal: if ∀σ ∈ L(N ,M0) and π(σ) = s, #(σ) � φ .
This state shows that there is no sequence having the
same observation s violates φ .

• Faulty: if ∀σ ∈ L(N ,M0) and π(σ) = s, #(σ) � ¬φ .
This state implies that all sequences having the same
observation s violate φ .

• Uncertain: if there exists two sequences σ1, σ2 ∈
L(N ,M0), π(σ1) = π(σ2) = s, #(σ1) � φ and #(σ2) �
¬φ . In which case, the behaviour of the system is am-
biguous because both Normal and Faulty states are
possible during the observed sequence. For this rea-
son, this state is called Uncertain state.

The following theorem describes the extension of our pre-
vious work introduced in [Al-Ajeli and Bordbar2016] to the
case where the failures are not captured as events but as vi-
olations of constraints.
Theorem 3. Assume that (N ,M0) is a Petri net such that
for any solution x of the state equation M0 +Ax = M, there
is a run M0

σ→ M and x = #(σ). Suppose that E is the



set of inequalities −Ax ≤ M0 created from the state equa-
tion of N . Assume that T = To ∪ Tu, To = {t1, . . . , tk},
Tu = {tk+1, . . . , tn} and failures are not captured as events.
The vector of variables x1, . . . ,xn corresponds to the number
of firing the transitions t1, . . . , tn. Assume also that φ is the
constraint and φ ′ is its violation (see above). Suppose that
the set of inequalities R and R′ are respectively produced
from applying of IFME to both E ∪{φ} and E ∪{¬φ} to
eliminate all variables corresponding to transitions in Tu.
Then, for any given sequence of observable events s= π(σ),
where σ is a firing sequence in N , if

1. #(s) 2 R, then the diagnosis state is Faulty.

2. #(s) 2 R′, then the diagnosis state is Normal.

3. #(s) � R and #(s) � R′, then the diagnosis state is Un-
certain.

4. #(s) 2 R and #(s) 2 R′, it is not possible to have this
case.

Proof. In what follows assume that #(s) = (α1, . . . ,αk).
Proof of 1: Assume that #(s) 2 R, but the diagno-

sis state is not Faulty. If #(s) 2 R, then for every
valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν =
(α1, . . . ,αk,αk+1, . . . ,αn), ν 2 E ∧ φ by Theorem 1. As a
result, ∀σ ′ ∈ L(N ,M0) such that π(σ ′) = s, #(σ ′) � ¬φ .
Hence a violation of constraint has happened during observ-
ing s. This contrasts the assumption.

Proof of 2: Using the same argument in Proof of 1 re-
placing R with R′, we can prove that if #(s) 2 R′, then the
diagnosis state is Normal.

Proof of 3:Assume that #(s) � R and #(s) � R′, but we
are certain about the diagnosis state. If #(s) � R, then there
exists a valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that
ν = (α1, . . . ,αk,αk+1, . . . ,αn) and ν � E ∧φ by Theorem 1.
If ν � E ∧ φ , then ν � E. Considering that the state equa-
tion of N has a converse, then there exists σ ′ such that

M0
σ ′→M′, #(σ ′) = ν . Hence, σ ′ has violated the constraint.

Now, we claim that π(σ ′) = s. The proof of this claim is
accomplished by induction on the length of the observed se-
quence denoted |s|.
(Base case): If |s| = 1, then π(σ ′) = s because #(π(σ ′)) =
#(s). In fact, if π(σ ′) 6= s, then there are two entries, rep-
resenting the observable transitions, in #(s) and #(π(σ1))
having different values and this contrasts #(π(σ ′)) = #(s).
(Induction step): We assume that the claim is true for all s
with |s| ≤ k1 (Induction hypothesis). Then, we prove it true
for s with |s|= k1+1. Suppose s =ωt where t ∈ To and ω ∈
T ∗o . Since σ ,σ ′ ∈ L(N ,M0) and #(π(σ)) = #(π(σ ′)) =
#(s), then there are sequences σ ′1 ∈ T ∗ and σ ′2 ∈ T ∗u such
that σ ′ = σ ′1t ′σ ′2. In effect, t ′ is the most recent observable
transition in σ ′. Then we have

M0
σ ′1→M′1

t ′→M′2
σ ′2→M′, t ′ ∈ To

also σ ′2 can be empty. For σ = σ1tσ2 we have
M0

σ1→M1
t→M2

σ2→M, σ1 ∈ T ∗,σ2 ∈ T ∗u
Because π(σ)= s=ωt and t is the last observable transition
in σ , then π(σ1) = ω . By induction hypothesis, π(σ ′1) = ω .
Since #(π(σ ′)) = #(s) = #(ωt), then t = t ′ (if t 6= t ′ then
#(π(σ ′)) 6= #(s) and this is not true). As a result, π(σ ′) =
π(σ ′1)t

′ = ωt = s and this proves the claim.
Similarly, we can prove that if #(s) � R′, there exists a

sequence σ ′′ such that M0
σ ′′→ M′′, #(σ ′′) � ¬φ (a violation

of φ has occurred) and π(σ ′′) = s.

To conclude, since σ ′,σ ′′ ∈ L(N ,M0) with π(σ ′) =
π(σ ′′) = s, #(σ ′) � φ and #(σ ′′) � ¬φ , hence we have
Uncertain state, see section 2.2. This contrasts the assump-
tion.

Proof of 4: Assume that #(s) 2 R and #(s) 2 R′,
but this case is possible. If #(s) 2 R, then for every
valuation (αk+1, . . . ,αn) of (xk+1, . . . ,xn) such that ν =
(α1, . . . ,αk,αk+1, . . . ,αn), ν 2 E ∧ φ by Theorem 1. Also,
if #(s) 2 R′, then for every valuation (βk+1, . . . ,βn) of
(xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn), ν 2
E ∧¬φ by Theorem 1. Rephrasing this statement, we can
say that there exists at least one valuation (βk+1, . . . ,βn)
of (xk+1, . . . ,xn) such that ν = (α1, . . . ,αk,βk+1, . . . ,βn) and
ν � E ∧φ taking into account that ¬φ is the violation of φ

and σ is a firing sequence of N , i.e. #(σ) � E. Here we
have contradictory statements. Hence this case is an impos-
sible case. This contrasts the assumption and completes the
proof.

Remark 1: Note that the proofs of 1 and 2 in theorem 3 are
still valid for Petri nets which are not acyclic.

Theorem 3 provides a systematic procedure to detect vi-
olations of constraints. Note that the case where the observ-
able sequence does not satisfy both R and R′ is not possible.
Remark 2: The shape of each individual inequality that
expresses the constraint and its violation is important. For
example, a less interesting special case is when in the in-
equality all the non-zero coefficients are for observable tran-
sitions. For example, when in ∑

n
i=1 aixi we have ai = 0 if ti

is unobservable. In such a case, the sum can be calculated
from the observable events. This is similar to the case that
in classic failure diagnosis when some failure transitions are
observable. Interesting cases occur when ai = 0 for one or
more observable transition.
Example 2: Consider the Petri net N of Fig.1 of our run-
ning example. A special case of RFT failure is described
using (7) of section 3. Assuming that δ = 2, the con-
straint φ is written as φ := x2 − x15 ≤ 2 and its violation
as ¬φ := x15−x2 ≤−3 (Note that ¬φ has been rewritten in
the standard form of E). Adding these inequalities simul-
taneously to the set of inequalities E derived from (1), we
obtain two sets E ∪{φ} and E ∪{¬φ}. Then using IFME
method to eliminate all variables corresponding to unob-
servable transitions produces the sets of inequalities in (8)
and (9) respectively.

− x1 ≤ 0
− x3 ≤ 0

− x4 ≤ 0
− x5 ≤ 0

− x1 − x3 − x4 − x5 ≤ 0
− x15 ≤ 0

x1 − x15 ≤ 1
− x1 + x15 ≤ 0
− x1 − x4 + x15 ≤ 0
− x1 − x3 − x4 + x15 ≤ 0
− x1 − x3 + x15 ≤ 0
− x1 − x5 + x15 ≤ 0

+ x3 + x4 + x5 − x15 ≤ 2
− x3 − x4 − x5 + x15 ≤ 0

− x1 − x4 − x5 + x15 ≤ 0
− x1 − x3 − x5 + x15 ≤ 0
− x1 − x3 − x4 − x5 + x15 ≤ 0

(8)



− x1 ≤ 0
− x3 ≤ 0

− x4 ≤ 0
− x5 ≤ 0

− x1 − x3 − x4 − x5 ≤ 0
− x15 ≤ 0

x1 − x15 ≤ 1
− x1 + x15 ≤ 0
− x1 − x4 + x15 ≤ 0
− x1 − x3 + x15 ≤ 0
− x1 − x5 + x15 ≤ 0

− x3 − x4 − x5 + x15 ≤ 0
2x1 − x3 − x4 + 2x15 ≤ 0

− x1 − x4 − x5 + x15 ≤ 0
− x1 − x3 − x5 + x15 ≤ 0
− x1 − x3 − x4 − x5 + x15 ≤ 0
− x1 − x3 − x4 − x5 + 2x15 ≤ −3
− 2x1 − 2x3 − 2x4 − 2x5 + 3x15 ≤ −6

(9)

The resulting sets of inequalities shown in (8) and (9)
have only variables corresponding to observable transitions
{t1, t3, t4, t5, t15}. These two sets are used for estimating the
current state of the system for a given observed sequence of
events.

Table 1: Diagnosis state estimations.

No. s = π(σ) #(s) � R? #(s) � R′? Diag. state

1 ε Yes No Normal
2 t1 Yes No Normal
3 t1t3 Yes No Normal
4 t1t3t3 Yes Yes Uncertain
5 t1t3t3t3 No Yes Faulty
6 t1t3t3t3t15 Yes No Normal
7 t1t3t3t3t3t15 No Yes Faulty
8 t1t3t15 Yes No Normal
9 t1t3t15t1 Yes No Normal

10 t1t3t15t1t3 Yes No Normal
11 t1t3t15t1t3t15 Yes No Normal

Table 1. shows different observed sequences and the di-
agnoses state estimated in each case. By looking at the Petri
net in the figure, when the diagnoser observes no sequence
(s = ε), the diagnosis state is Normal, i.e. no violation of
the constraint φ has happened. In which case, the diagnoser
is certain that for all sequences having no observable transi-
tions, φ is evaluated to true as x2 = 0 and x15 = 0 for these
sequences.

The same diagnosis state is estimated when observing the
sequences 2, 3, 6, 8, 9, 10 and 11. For instance, in case of
s = t1, only two sequences, namely σ1 = t1 and σ2 = t1t2,
have π(σ1) = π(σ2) = s. But, both of them have the value
of φ true because x2 = #(t2,σ1) = 0,x15 = #(t15,σ1) = 0 and
x2 = #(t2,σ2) = 1,x15 = #(t15,σ2) = 0. In other words, both
#(σ1),#(σ2) � φ . Thus, the diagnosis state is Normal.

On the other hand, suppose that the sequence 5 is
observed. In that case, there exists three sequences
σ1 = t1t2t3t6t2t3t6t2t3t6t2, σ2 = t1t2t3t6t2t3t6t2t3t7 and σ3 =
t1t2t3t6t2t3t6t2t3t7t12 with π(σ1) = π(σ2) = π(σ3) = t1t3t3t3.
By looking at x2 = #(t2,σi) and x15 = #(t15,σi), we find that

#(σi) � ¬φ for i = 1,2,3. As a result, a violation of φ has
certainty happened.

Now let us explore the case where the sequence 4 is ob-
served. Again, we have three sequences σ1 = t1t2t3t6t2t3t6t2,
σ2 = t1t2t3t6t2t3t7 and σ3 = t1t2t3t6t2t3t7t12 with π(σ1) =
π(σ2) = π(σ3) = t1t3t3. Obviously, #(σ1) � φ ′, but
#(σ2),#(σ3) � φ . This is Uncertain state because the di-
agnoser cannot decide whether a violation of φ happened or
not.

Note that the same results shown in Table 1. can be ob-
tained by replacing the transition t3 by t4 or t5. For instance,
the observed sequences t1t4 and t1t5 do not violate φ as t1t3
does not.

5 Related Works
The notion of diagnosis of violations of constraints (diag-
nosis of failures which are not captured as events) might
resemble the notion of diagnosis of supervision patterns
presented in [Jéron et al.2006]. These patterns define the
language to which the sequences of events including fail-
ures belong. Five supervision patterns have been defined to
model different forms of failures. For each pattern an Au-
tomaton is identified which accepts the language represent-
ing by the pattern. Taking a product composition between
this Automaton and the Automaton modelling the system,
the resulting structure can be used for diagnosis of the se-
quences having that pattern.

To compare, the work presented in this paper is based
on Petri nets model and not Automata-based. Also, the vi-
olations of constraints to be diagnosed is modelled by in-
equalities. These inequalities express relations between the
number of occurrences of given transitions in the model. In
this sense, the order relation between these transitions is not
taken into account. However, using the inequalities, a broad
range of patterns can be efficiently modelled. In addition,
our approach outperforms the supervision pattern method
mentioned above for detecting the same pattern because we
do not perform a product composition.

Finally, we wish to point out that there is a strong rela-
tionship between using Integer Linear Programming (ILP)
and IFME method. Nevertheless, in our work failure diag-
nosis problem is NOT reduced to ILP problem. In effect,
we use IFME method to project sets of inequalities on vari-
ables corresponding to observable transitions in Petri nets
models. That is, our approach does not use IFME method to
solve ILP problem.

6 Conclusions
A different form of failures in partially observable Discrete-
Event Systems modelled using Petri nets has been presented
in this paper. In this form, failures are no longer modelled
as events but as violations of constraints. In order to di-
agnose such failures, IFME approach has been extended to
cope the presented failures form. Using IFME approach, the
diagnoser is represented by two sets of inequalities in vari-
ables corresponding to observable transitions. These sets
are obtained as follows. First, two sets of inequalities, de-
rived from state equations, are augmented by the inequali-
ties expressing the constraint and its violation. Then IFME
method is applied to eliminate the variables corresponding
to unobservable transitions. The resulting sets represent the
diagnoser. The notion presented in this paper has been ex-
plained with the aid of a running example.
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