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Abstract

Sequential diagnosis is a well-known type of the diagno-
sis problem in which multiple observations of a system
are given as input such that some of these observa-
tions exhibit abnormal behavior. The task in sequen-
tial diagnosis is to find the set of components that are
faulty and have caused the abnormal behavior. An ad-
ditional challenge in sequential diagnosis is that some
components may fail intermittently, i.e., behaves ab-
normally in one observation and behave normally in
another. Most past work on sequential diagnosis ap-
plied a conflict-directed approach, where conflicts are
extracted from each observation and minimal hitting
sets of all conflicts are considered as diagnoses. Inspired
by recent success in SAT-based approaches for solving
classical diagnosis problems, we study in this work two
ways to solve the sequential diagnoses by compiling it
to Boolean satisfiability (SAT) and using state-of-the-
art SAT solvers.

Introduction
The goal in a diagnosis problem is to find the set
of components that are faulty and have caused the
abnormal behavior. Sequential diagnosis is a type of
diagnosis problem in which multiple observations are
given, such that the observation were taken in dif-
ferent time steps. Some work on sequential diagno-
sis focus on how to actively generate these additional
observations, e.g., by placing probes to provide ad-
ditional measurements (de Kleer and Williams 1989;
Siddiqi and Huang 2011; Feldman et al. 2013) or by
actively testing the system on different sets of inputs
and outputs (Feldman, Provan, and van Gemund 2010;
Zamir, Stern, and Kalech 2014). In this work we use
the term sequential diagnosis to refer only to the diag-
nostic challenge of how to infer diagnoses from multiple
observations, regardless of how these observations were
generated.

Indeed, the problem of finding diagnoses for a set of
observations poses additional challenges over the clas-
sical diagnosis problem (in which a single observation
is given). First, the sequential diagnosis problem has
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a higher complexity, as it needs to reason about more
information. Second, a faulty component may behave
normally in some observations, thus making it more dif-
ficult to find. Such faults, which manifest only in some
observations, are called intermittent faults.

We focus on a model-based approach for solving the
sequential diagnosis problem, i.e., we assume that a
model of the system’s behavior is given and infer di-
agnoses from the model and the observations. Sev-
eral approaches were previously proposed for model-
based sequential diagnosis. For example, some pro-
posed a conflict-directed approach (Raiman et al. 1991;
De Kleer 2009), generating conflicts for each observa-
tion and merging them together. Others proposed a
hierarchical approach based structural abstraction and
compilation to d-DNNF (Siddiqi and Huang 2011). En-
couraged by recent success of model-based diagnosis al-
gorithms for classical diagnosis that are based on com-
pilation to Boolean satisfiability (SAT) (Metodi et al.
2014; Marques-Silva et al. 2015), we investigate in this
work a SAT-based approach for sequential diagnosis.

Two SAT-based algorithms are presented: one-SAT
and divide-and-join. The former compiles the prob-
lem to a single formula, and the latter compiles each
observation to its own SAT formula and then joins the
resulting diagnoses. Importantly, we do not presume
to claim that the SAT-based algorithms are better or
worse than the algorithms from the other approaches
(conflict-directed, d-DNNF). Our goal is to propose, an-
alyze, and evaluate SAT-based solutions for the sequen-
tial diagnosis problem.

The paper is structured as follows. First, background
and formal definition of model-based diagnosis and se-
quential model-based diagnosis is given. Then, we char-
acterize different assumptions about the behavior of
components in a sequential diagnosis problem. Then,
we introduce the two SAT-based algorithms we propose
and evaluate them empirically. Lastly, we conclude and
discuss future work.

Model-Based Diagnosis
An MBD problem is defined by a tuple
〈SD,COMPS,OBS〉, where SD is a model of the
diagnosed system, COMPS is the set of system com-



ponents, and OBS is the observed behavior of the
system (e.g., the observed inputs and outputs of the
system). The system model SD specifies the normal
behavior of every component c ∈ COMPS. We say that
a component c ∈ COMPS has a strong fault-model
(SFM) if SD contains some information about how c
behaves when faulty. Otherwise we say that c has a
weak fault-model (WFM).

A solution to an MBD problem is a diagnosis. A di-
agnosis is an assumption about the behavior of the sys-
tem components that is a plausible explanation of the
observed behavior. To define a diagnosis formally, we
introduce the following notation. Every component c
is associated with health variable hc. The domain of
hc, denoted dom(hc), is the set of possible assumptions
about the behavior of c. These are called the behav-
ior modes of c. The behavior modes of every compo-
nent c consists a healthy mode, representing that c is
assumed to be healthy, and one or more fault modes,
representing various ways in which c can behave abnor-
mally. We denote the health mode and the set of fault
modes of component c by ok and Fc, respectively. Note
that dom(hc) = {ok} ∪ Fc and if c has a WFM then
Fc contains a single fault mode unknown. A health as-
signment is an assignment of behavior modes to all the
health variables. In logical terms, a health assignment
is a conjunction of propositional literals, where each of
these literals is of the form hc = m where m ∈ dom(hc).
Finally, we can formally define a diagnosis.

Definition 1 (Diagnosis). A health assignment ω is a
diagnosis iff SD ∧OBS ∧ ω is satisfiable.

The goal of an MBD algorithm is to return one or
more diagnoses, as defined in Definition 1.

The number of diagnoses can be very large and
there is therefore a need to prioritize them. A com-
mon method to do so is by using the notions of subset-
minimal (SM) diagnoses and minimal-cardinality (MC)
diagnoses, which are explained next. For a diagnosis ω
we denote by ω− the components in ω assigned to a
faulty behavior mode, and the size of ω− is referred to
as the cardinality of ω, denoted by |ω|. A diagnosis is
a SM diagnosis iff there is no other diagnosis ω′ such
that ω′− ⊂ ω−. A diagnosis is a MC diagnosis iff there
is no other ω′ such that |ω′| < |ω|. Preferring SM di-
agnoses over diagnosis that are not SM, and preferring
MC diagnoses over SM diagnoses, roughly corresponds
to an Occam’s Razor reasoning in which a simpler ex-
planation – that which assumes less faulty components
– is to be preferred over the more complex one. In this
work we mostly focus on the problem of finding MC
diagnoses.

Sequential MBD

An implicit assumption in the MBD problem defini-
tion above is that OBS is the observed system behavior
at a specific point in time. It is often the case, how-
ever, that the diagnosing agent observes the system
over time. This gives rise to the sequential MBD prob-

lem, which is an extended version of the MBD problem
in which multiple observations are given as input. For-
mally, the sequential MBD problem is defined by a tuple
〈SD,COMPS, T, {OBSt}t∈T 〉, where SD and COMPS
are the system description and set of components as
above, T = {t1, . . . , tn} is the set of time points in
which the system was observed, and OBSti is the ob-
servation at time point ti. Following de Kleer (Raiman
et al. 1991), we use the term observation time to refer
to a point in time in which the system is observed, i.e.,
every t ∈ T is an observation time.

A solution to a sequential MBD is also a diagnosis.
However, a diagnosis in the context of sequential MBD
is an assumption about the behavior of the system com-
ponents that is a plausible explanation for all the obser-
vations. To formally define a diagnosis in this context,
we define for every component c and observation time
t a timed health variable hc,t. The domain of hc,t is the
behavior modes of component c and its value represents
the behavior mode of c at observation time t. A timed
health assignment is an assignment of behavior modes
to all the timed health variables.

Definition 2 (Diagnosis for a sequential MBD prob-
lem). A health assignment ω is a diagnosis of a sequen-
tial MBD problem π = 〈SD,COMPS, T, {OBSt}t∈T 〉
iff there exists a timed health assignment τ such that
for every component c it holds that if hc = ok then
∀t ∈ Thc,t = ok and if hc 6= ok then ∃t ∈ Thc,t = hc

As was the case in the classical MBD problem, the
number of diagnoses for a sequential MBD problem can
be very large, and therefore it is desirable to have some
sort of minimality criteria over sequential MBD diag-
noses to focus the problem solver. To this end, we de-
fine the cardinality of a sequential MBD diagnosis as
the number of components that are assumed faulty in
at least one of the observation times. Formally, the car-
dinality of a diagnosis ω, denoted by |ω| is given by

|ω| = |{c|c ∈ COMPS and
∨
t∈T

h(c, t) 6= ok}|

Our goal in this work is to find MC diagnoses for the
sequential MBD problem.

Intermittent and Non-Intermittent
Behavior Modes

Definition 2 embodies a fundamental difference between
MBD and sequential MBD: in general, a component
may output different values for the same input val-
ues in different observation times. This can be due to
changes in its state between observation times, and due
to some un-modeled aspect of the environment. This is
referred to as an intermittent behavior mode. However,
it is sometimes reasonable to assume that the compo-
nents behavior is consistent over time, i.e., that for the
same input the component will generate the same out-
put. This is referred to as a non-intermittent behavior
mode.



As an example, software components are notorious
for their intermittent behavior, due to the computer’s
multi-tasking nature and dependence on many external
aspects (e.g., network speed). By contrast, it is reason-
able to assume a non-intermittent behavior from a valve
in a hydraulic system, since a leaking valve is expected
to always leak when it is flooded with fluid.

We follow de Kleer (Raiman et al. 1991) and formally
define a component with a non-intermittent behavior as
follows. Let in(c, t) and out(c, t) be the values inputted
to and outputted by a component c at observation time
t.

Definition 3 (Non-Intermittent Behavior). A compo-
nent c is said to have a non-intermittent behavior mode
iff there exists a function F such that

∀t ∈ T : F (in(c, t)) = out(c, t)

A component with an intermittent behavior mode is
a component for which such a function F may not exist.

The Relation Between Fault Modes and
Intermittency

One can assume that a component has an intermittent
(Int) or a non-intermittent (NotInt) behavior mode, and
one can assume that a component has a strong fault
model (SFM) or a weak fault model (WFM). The first
observation we make in this work is that each of the
resulting four combinations (Int+SFM, NotInt+SFM,
Int+WFM, and NotInt+WFM) is possible. Next, we
formally define each of these combinations.

Int+WFM This is the least constrained assumption
one can have on a component. There is no constraints
on the abnormal behavior of the component and the
component may behave differently in different observa-
tion times. Let φc be a function describing the healthy
behavior of component c, and let h(c, t) be a predicate
that is true iff component c follows its healthy behav-
ior at observation time t, i.e., h(c, t) ≡ (hc,t = ok). A
component that is Int+WFM is defined as follows:

∀t ∈ T : h(c, t)→ (out(c, t) = φc(in(c, t))) (1)

NotInt+WFM The behavior of a component that
is NonInt+WFM was described by de Kleer (Raiman
et al. 1991). Although the faulty component’s behavior
is not specified, a NonInt+WFM component’s faulty
behavior is constrained to be consistent along obser-
vations (Definition 3). Thus, the formal definition of a
NonInt+WFM component is a mixture of Definition 3
and Equation 1.

∃φFc s.t. ∀t ∈ T : h(c, t)→ (out(c, t) = φc(in(c, t)))

∧ ¬h(c, t)→ (out(c, t) = φFc (in(c, t))) (2)

In plain words, a NonInt+WFM component is a compo-
nent that has a fault model and it is non-intermittent,
but we have no knowledge about that fault model.

Int+SFM Here, we know the possible way in which
the component may behave when faulty (the behavior
modes). However, the component may act differently
in different observation times, i.e., switch between a
healthy behavior and each of the behavior modes. 1 Let
Mc = {m1, . . . ,m|M |} be the set of possible behavior
modes of component c, and let φmi

c denote the function
describing the behavior of component c when in mode
mi. fi(c, t) is a predicate that is true iff component c is
following the behavior of mode mi at observation time
t. An Int+SFM component is defined as follows:

∀t ∈ T : h(c, t)→ (out(c, t) = φc(in(c, t)))∧
mi∈M

fi(c, t)→ (out(c, t) = φmi
c (in(c, t)))

(3)

In addition, we must define that a component c at time
t has exactly one behavior mode – either healthy or one
of the fault modes.

NotInt+SFM This is the most constrained behavior
mode. A NonInt+SFM component must behave consis-
tently throughout the observations, and its faulty be-
havior is specified as one of the fault modes in M . The
formal definition is the same as in the Int+SFM case
(Equation 3), but with an additional constraint to rep-
resent the non-intermittent behavior:

∀t, t′ ∈ T : h(c, t) = h(c, t′)∧
mi∈M

fi(c, t) = fi(c, t
′) (4)

Finding Diagnoses
In this section we propose algorithms for solving a se-
quential diagnosis problem. Most of the presentation
below as well as the experimental results focus on the
Int+WFM configuration. We provide a brief discussion
of how to extend these methods to the other configura-
tions later in the paper.

Raiman et al. (1991) proposed a conflict-directed ap-
proach for solving the sequential MBD problem. In this
approach, conflicts are extracted from each observation,
and every minimal hitting set of all the conflicts is con-
sidered to be a diagnosis.2

In this work we explore a different approach to solv-
ing the sequential MBD problem, which is based on
compiling the problem to Boolean satisfiability (SAT).
The motivation for proposing such an approach is the
recent success of SAT-based solvers for the classical,

1Here we describe a strong form of intermittency, where a
component may have different fault modes in different obser-
vation times. One can also envision a weaker form of inter-
mittency, in which a faulty component is associated with a
single fault behavior mode, but can act normally in some ob-
servations. Addressing this is variant is left for future work.

2Verifying that a hitting set is a diagnosis can be done
by running a SAT solver on each observation.



WFM SFM
Int. Faulty behavior is unconstrained Must follow a behavior mode

but mode can differ between observations
Non-Int. Not constrained by faulty behavior modes Must follow a single behavior mode

but must be consistent across observations across all observations

Table 1: A summary of a components faulty behavior in the different configurations of WFM/SFM and Int./NonInt.

single-observation, MBD problem (Metodi et al. 2014).
Therefore, we first briefly describe the SAT-based ap-
proach for solving the classical MBD problem, and then
explain two ways to extend it for solving the sequential
MBD problem.

SAT-based MBD algorithm

A SAT solver is an algorithm that accepts as input a
Boolean formula and outputs a satisfying assignment
of that formula, if such exists, or false otherwise. It is
straightforward to compile an MBD problem to a SAT
problem, i.e., to a Boolean formula. We define clauses
for every component specifying that every component
has exactly one behavior mode, and an additional clause
for every pair of component and behavior mode, speci-
fying the component’s behavior when in that behavior
mode. In a WFM, we can define a single clause for a
component, specifying that if it is healthy then it will
act normally. In addition, there is a clause for every
observation, specifying the values that were observed.
The variables of this Boolean formula include the health
variables hc, and the values of these variables in a sat-
isfying assignment are exactly a diagnosis.

To find MC diagnoses we add additional clauses to
ensure that no more than UB health variables, where
UB is an upper bound to the size of the MC diagnoses.
There are standard ways to define such a cardinality
constraint in a SAT formula (Bailleux and Boufkhad
2003; Silva and Lynce 2007). The process of finding MC
diagnoses starts with finding the cardinality of the MC
diagnoses. This is done by setting UB to an upperbound
on the MC, and then iteratively decreasing UB until the
resulting formula is not satisfiable, indicating that the
previous UB is the minimal cardinality. Then, UB is set
to that cardinality and a SAT solver is used to return
all satisfying assignments, which are exactly all the MC
diagnoses. For more details on this process see Metodi
et al. (2014).

Sequential MBD as a Single Boolean
Formula

The first way we propose to encode the sequential MBD
problem is to construct a single Boolean formula that
encodes the knowledge from all the observations. Do-
ing this is under the assumption that components fail
intermittently (recall that we focus on the Int+WFM)
is fairly simple, since the observations can be encoded
independently to a Boolean formula and we can just
merge them together. Note that all the variables that

in2,1=1 A

in1,1=1

out1=0
B

z

in1,2=1

in2,2=1

out2=0

Figure 1: A simple example of a system with two obser-
vations.

represent the internal state of the system must be du-
plicated, to allow them to receive different values for
different observations.

To illustrate this, consider the simple example de-
picted in Figure 1. The inputs in1,1, in1,2, in2,1, and
in2,2 are the first and second input of the first and sec-
ond observation, such that ini,j is the ith input of the
jth observation. Similarly, out1 and out2 are the outputs
of the first and second observations, respectively. The
variable z represents the value of an internal state of
the system – the output of component A. As explained
above, the variables for the internal state of the sys-
tem are duplicated and hence in the Boolean formula
for Figure 1 we have z1 and z2, which are the values
of the output of component A at observation times 1
and 2, respectively. The resulting Boolean formula is
given below: Equations 5-8 describe the normal behav-
ior of components A and B, Equation 9 describes the
observations’ inputs, and Equation 10 describes the ob-
servations’ outputs.

(hA,1 = ok)→(z1 = 1− in2,1) (5)

∧(hB,1 = ok)→((z1 ∧ in1,1) = out1) (6)

∧(hA,2 = ok)→(z2 = 1− in2,2) (7)

∧(hB,2 = ok)→((z2 ∧ in1,2) = out2) (8)

∧in1,1 = 1 ∧ in1,2 = 1 ∧ in2,1 = 1 ∧ in2,2 = 1 (9)

∧out1 = 1 ∧ out2 = 1 (10)

To find MC diagnoses, we also add a set of clauses to
constrain the cardinality of the returned diagnoses. This
is done by defining a health predicate Hc that is not
timed (in contrast to the time-health variable hc,t) for
every component c, such that Hc is true iff c is assumed
to behave normally in all observation times. Thus, each
such health predicate is associated with the following



clause:
Hc ↔

∧
t∈T

(hc,t = ok)

For the example in Figure 1 we add the following clauses
for health predicates HA and HB .

HA ↔((hA,1 = ok) ∧ (hA,2 = ok)) (11)

HB ↔((hB,1 = ok) ∧ (hB,2 = ok)) (12)

The process of finding all MC diagnoses is similar to
the process described earlier for the classical MBD prob-
lem. A cardinality constraint is added to the Boolean
formula that constrains these number of health predi-
cates that are set to false. The constraint starts with
some upper bound UB on the cardinality of the MC
diagnoses, and we decrease UB iteratively (one by one)
until the resulting Boolean formula is not satisfiable.
This indicates that the previous value of UB is the min-
imal cardinality, and we set the cardinality constraint
to this value to find all MC diagnoses. We call the above
algorithm, which compiles the sequential MBD problem
into a single Boolean formula, the one-SAT algorithm.

Joining Diagnoses of Different Observation

Encoding the knowledge about all observations into a
single Boolean formula allows using the full power of
modern SAT solvers. However, the size of the result-
ing encoding grows linearly with the number of obser-
vations. This can become a big computational problem
since the worst case runtime complexity of modern com-
plete SAT solvers is exponential in the size of the encod-
ing (due to the P vs. NP issue). Next, we propose an ap-
proach that solves each observation independently, and
then seeks to join the resulting set of diagnoses into a
single diagnosis for the entire sequential MBD problem.

Let Π = 〈SD,COMPS, T, {OBSt}t∈T 〉 be a sequential
MBD problem. We define Πi = 〈SD,COMPS,OBSi〉 as
the classical MBD problem that uses the same system
model and components as Π but considers only obser-
vation i. Let Ω(Π) and Ω(Πi) denote the set of all di-
agnoses for the sequential and classic MBD problems Π
and Πi, respectively. Since we focus on WFM a com-
ponent in a diagnosis is either assumed to be healthy
(ok) or not. Thus, we can represent a diagnosis as the
set of components that are assumed to be faulty instead
of a health assignment (which maps every component –
healthy and faulty – to its behavior mode). For conve-
nience of notation, we do so hereinafter, and thus every
element in Ω(Π) and Ω(Πi) is simple a set of compo-
nents. Slightly abusing standard relational algebra ter-
minology, we define the join operation between two sets
of diagnoses Ωi and Ωj , denoted Ωi ./ Ωj , as follows:

Ωi ./ Ωj = {ωi ∪ ωj |ωi ∈ Ωi, ωj ∈ Ωj}

Since we assume that faults are intermittent, then

Ω(Π) = Ω(Π1) ./ Ω(Π2) ./ . . . ./ Ω(Πn) (13)

Therefore, we can find all diagnoses for the sequential
MBD problem Π by solving the classical MBD problems

Π1, . . .Πn individually, and joining the results. Con-
cretely, instead of trying to solve the large Boolean for-
mula described in the previous section, we can solve n
smaller Boolean formulas and join their results. We call
this algorithm divide-and-join.

Recall that the worst case runtime of current com-
plete SAT solvers is exponential in the size of the
Boolean formula they are given. Thus, solving the n
Boolean formulas that represents the MBD problems
Π1, . . . ,Πn has a worst case runtime that is exponen-
tially smaller than solving the single Boolean formula
for Π, as the encoding for Π is n times larger than that
of Πi.

However, there is no free lunch, and the runtime
of divide-and-join can be as bad and even worse
than the runtime of the one-SAT algorithm. This is
because the runtime of the join operation. Under a
naive implementation, the join operation requires run-
ning over the cross product of all the diagnoses sets
Ω(Π1), . . . ,Ω(Πn), thus requiring runtime that is expo-
nential in the number of observations. It is not obvious,
at least to the authors, if there is a more efficient way
to compute this join (notice its difference from stan-
dard relational algebra join, which can be implemented
more efficiently). Moreover, the number of diagnoses
returned by each MBD problem Πi can be exponential
in the number of components. Lastly, each activation
of the SAT solver incurs some overhead, which is in-
curred n times for divide-and-join (as it requires n
activations of a SAT solver) while this overhead is only
incurred once for one-SAT. Indeed, as we show in the
experimental results, there is no universal winner and
which algorithm is more efficient depends on various
domain properties (see discussion later in the results
section).

Finding Minimal Diagnoses

The divide-and-join algorithm was described above
for finding all diagnoses, which, as discussed earlier, can
be prohibitively large. The question we address next
is whether the divide-and-join can be applicable for
finding all SM diagnoses, and for finding all MC diag-
noses.

It turns out that using divide-and-join for finding
all SM diagnoses is straightforward, since the relation
between all the diagnoses of Π and all the diagnoses of
Π1, . . . ,Πn is maintained also for finding all SM diag-
noses. That is, if ΩSM (Π) and ΩSM (Πi) are the set of
SM diagnoses for Π and Πi, respectively, then:

ΩSM (Π) = Ω(Π1)SM ./ Ω(Π2)SM ./ . . . ./ Ω(Πn)SM

(14)
Therefore, divide-and-join can be used as-is for find-
ing SM diagnoses: simply find all SM diagnoses for
Π1, . . . ,Πn and join the results.

However, Equation 13 does not carry over for finding
MC diagnoses. That is, the join of all MC diagnoses for
Π1, . . . ,Πn may not contain all MC diagnoses for Π and
may contain diagnoses that are not MC diagnoses of Π.



Formally, if ΩMC(Π) and ΩMC(Πi) are the set of SM
diagnoses for Π and Πi, respectively, then:

ΩMC(Π) 6= Ω(Π1)MC ./ Ω(Π2)MC ./ . . . ./ Ω(Πn)MC

(15)
As an example, consider a sequential MBD problem
with two observations, such that:

ΩSM (Π1) ={{A,B}}
ΩSM (Π2) ={{E,F}, {A,B,C}}

Therefore

ΩMC(Π1) = {{A,B}} and ΩMC(Π2) = {{E,F}}

The join ΩMC(Π1) and ΩMC(Π2) is the diagnosis ω =
{A,B,E, F} with cardinality 4. However, the MC diag-
nosis for Π is actually ω′ = {A,B,C} with cardinality
3. Therefore, divide-and-join cannot find MC diag-
noses without further adaptations.

Divide-and-Join for Finding MC Diagnoses

Next, we describe how divide-and-join can be mod-
ified to find MC diagnoses. We call this algorithm
Divide-and-Join-MC. To properly explain divide-
and-join-MC, we require the following terminology. Let
mc and mci be the cardinality of the MC diagnoses for
the MBD problems Π and Πi, respectively. Also, let
Ωn(Π) and Ωn(Πi) be the set of all SM diagnoses of
cardinality n or less for Π and Πi, respectively. A car-
dinality bounds vector is an n-ary vector b = 〈b1, . . . bn〉
such that for every i in the range [1, n] it holds that
bi ≥ mci.

We say that a cardinality bounds vector b is MC-
sufficient iff

ΩMC(Π) ⊆ Ωb1(Π1) ./, . . . , ./ Ωbn(Πn)

Finding an MC-sufficient cardinality bounds vector is
important since it proving that all MC diagnoses of
Π have been found. Finally, for a set of diagnoses X,
we define MC(X) as the cardinality of the diagnoses
that has the smallest cardinality in X, i.e., MC(X) =
minω∈X |ω|.
Divide-and-Join-MC starts by initializing a cardi-

nality bounds vector b by the cardinality of the MC di-
agnoses of the individual MBD problems, i.e., initially
b = 〈mc1, . . . ,mcn〉. In every iteration, the algorithm
computes for every problem Πi all the SM diagnoses
of cardinality equal to or lower than bi. Then, the al-
gorithm attempts to prove that b is an MC-sufficient
cardinality bounds vector, by inspecting whether the
join of these sets of diagnoses is the set of all MC diag-
noses of Π. If the algorithm is able to prove that b is
an MC-sufficient cardinality bounds vector - it termi-
nates, returning all diagnoses in the join that have the
smallest cardinality. Otherwise, the cardinality bounds
vector is incremented (adding one to all its elements),
and the process continues.

The key question is how to prove that a cardinal-
ity bounds vector is MC-sufficient. For this we provide

Name |COMPS| in out
74181 65 14 8
74283 36 9 5
c432 160 36 7
c880 383 60 26

Table 2: The Benchmark suite: systems 74XXX and
ISCAS-85.

the following simple rule: if UB is an upper bound on
the MC of Π then b = 〈UB, . . . , UB〉 is MC-sufficient.
The challenge is how to find a low enough UB. For
every cardinality bounds vector b, For every cardinal-
ity bounds vector b, it holds that every diagnosis ω in
Ωb1(Π1) ./, . . . , ./ Ωbn(Πn) is a diagnosis of Π and thus
|ω| is an upper bound on mc. Thus, every iteration of
the algorithm can provide a better UB. Concretely, the
divide-and-join algorithm starts with a cardinality
bounds vector b = 〈mc1, . . . ,mcn〉 and in every iter-
ation obtains the current UB (by computing all diag-
noses for b and joining them). If UB = mini bi all MC
diagnoses have been found. Otherwise, a new iteration
starts with every element in b incremented by one.

Empirical Evaluation

We evaluated the proposed SAT-based algorithms –
one-SAT and divide-and-join – on Boolean circuit
systems from the 74XXX (Hansen, Yalcin, and Hayes
1999) and ISCAS-85 (Brglez, Bryan, and Kozminski
1989) standard benchmarks suites. The details (num-
ber of components and number of inputs and outputs)
of the chosen systems are given in Table 2. To the best
of our knowledge, there is no standard set of obser-
vations for sequential MBD problems. Thus, we gen-
erated for each of these systems random sequential
MBD problems with 1, 2, 4, 6, 8, and 10 observations.
Each sequential MBD problem was generated as fol-
lows. First, faults are injected to 2-4 components (com-
ponents are selected randomly). Then, in every obser-
vation we generate random input values and propagate
them in the system. The faulty components behave ab-
normally – i.e., negate the normal output – with prob-
ability pint ∈ {0.3, 0.5, 0.7, 0.85, 1}, where pint is a pa-
rameter which we varied. This parameter (pint) controls
the “intermittency” of the components, where pint = 0
means faulty component always behave normally, while
pint = 1 means that the faulty component will behave
abnormally in every observation. We generated 15 dif-
ferent sequential MBD problems for each configuration
of system, number of faults, number of observations,
and pint.

We solved each problem with one-SAT and with
divide-and-join, and measured the runtime required
to find the first MC diagnosis, and the runtime required
to find all MC diagnoses. All these values are presented
in Figure 2, which shows runtime in seconds (y-axis)
for different systems, ordered by increasing size. The re-
sults show several interesting trends. First, the runtime
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Figure 2: The runtime of one-SAT and divide-and-join
as a function of the size of the system.
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Figure 3: The runtime of one-SAT and divide-and-
join as a function of the cardinality of the diagnosis.

of one-SAT becomes significantly larger than the run-
time of divide-and-join for larger systems, highlight-
ing the benefit of using divide-and-join for the harder
problems. Second, observe that the time gap between
finding the first diagnosis and all diagnoses is signifi-
cant in one-SAT but less so in divide-and-join. This
is due to the differences between how these algorithm
works: the one-SAT algorithm first searches for a single
MC diagnosis and then asks the SAT solver to find all
other MC diagnoses. In contrast, the divide-and-join
algorithm computes all MC diagnoses for each observa-
tions (and possible more, when increasing the cardi-
nality bounds vector) when searching for the first MC
diagnoses. Thus, the extra work the divide-and-join
algorithm needs to do between finding a first MC di-
agnoses and finding all of them is smaller than in the
one-SAT algorithm, and consequently the gap between
finding a single MC diagnoses and a finding all of them
is smaller. In the results below, we focus on the runtime
of finding all MC diagnoses.

The cardinality of the diagnosis is an important fac-
tor in model-based diagnosis since the larger the car-
dinality the harder solving the diagnosis problem. In

0

10

20

30

40

50

60

2 4 6 8 10
Observations

Join

Single

Figure 4: The runtime of Single and Join as a function
of the cardinality of the diagnosis.

Figure 3 we can see the runtime of the one-SAT and
divide-and-join algorithms as a function of the car-
dinality. It is interesting to see that the runtime growth
of the divide-and-join algorithm is faster than that
of one-SAT. Divide-and-Join is even slower than one-
SAT for cardinality 4. This is reasonable since higher car-
dinality suggests that more observations exhibited ab-
normal behavior and therefore the join operation, done
by the divide-and-join algorithm, will be more time
consuming. By contrast, when the cardinality is small
this suggests that some of the observations will not even
exhibit abnormal behavior. The divide-and-join al-
gorithm is especially suited to identify such cases, as
these observations will not contribute any diagnosis and
the join operation can simply skip them.

Lastly, we consider the impact of the number of ob-
servations on the runtime of the competing algorithms.
The number of observations is a key factor in sequen-
tial MBD and considering more observations is expected
to result in higher running time. Figure 4 shows the
runtime of both algorithms for problems with differ-
ent number of observations. We can see that in small
number of observations there is no significant difference
between the two algorithms and that indeed the run-
times of both algorithms increase with the number of
observations. However, as the number of observations
grows the growth in runtime of divide-and-join is
more moderate than that of one-SAT. Thus, divide-
and-join is more robust to increasing the number of
observations. This can be explained by the fact that
any added observation automatically incurs an increase
in the size of the Boolean formula generated by one-
SAT, and consequentially added runtime. This is not the
case in divide-and-join, which is not affected, per se,
by the number of observations, but by the number of
diagnoses each observation has.

To conclude, both divide-and-join and one-SAT
have configurations in which they are better: divide-
and-join is faster for large systems and many obser-
vations but one-SAT is better for problems with high
cardinality.



Conclusion and Future Work

In this work we proposed two SAT-based algorithms
for solving sequential MBD problems. The first, named
one-SAT, generated a single Boolean formula such that
every satisfying assignment to that formulate is a di-
agnosis for the sequential MBD problem. The second
SAT-based algorithm, named divide-and-join, gener-
ated a Boolean formula for every observation, and then
merges the resulting diagnoses. There is no dominant
algorithm, and we investigated empirically under which
conditions each algorithm is superior.

This work only focused on the Int.+WFM setting.
However, there are three other configurations that
we did not deal with in this work: NonInt.+WFM,
Int.+SFM, and NonInt.+SFM. The one-SAT algorithm
can be easily adapted to Int.+SFM, and NonInt.+SFM
configurations. Encoding non-intermittent components
with WFM is more challenging, as it requires defining
that a faulty behavior is consistent without any notion
of what the faulty behavior will be. This, as well as
adapting divide-and-join to these three configura-
tion, is a topic for future work.

An important direction for future work is to consider
a different objective than finding MC diagnoses. For ex-
ample, some components may fail more often than oth-
ers, and thus diagnoses that assume these components
are faulty should be prioritized. Assigning a probability
to a diagnosis of a sequential MBD problem is chal-
lenging when faulty components fail intermittently, as
it requires estimating both the probability of a compo-
nent to be faulty as well as the probability that a faulty
component will behave abnormally. However, relatively
recent work by de Kleer (2009) proposed a possible solu-
tion for this, and we intend to study how to incorporate
this in our SAT-based solver.
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