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Abstract
When employing model-based diagnosis, coming
up with the required model is a knowledge and
resource-intensive task. In this article, we show
how to automatically derive an abductive diagno-
sis model from system models written in the pop-
ular Modelica modeling language. Using Mod-
elica’s simulation features we inject potentially
faulty component behavior into the system model
and automatically derive cause and effect rules.
We afterwards use these rules for performing ab-
ductive diagnosis of the malfunctioning system.
Our first case studies demonstrate the applicabil-
ity and viability of the approach.

1 Introduction
A key element of any model-based diagnosis approach is
the system model allowing us to reason about the correct
functioning of individual system components [Davis, 1984;
Reiter, 1987; de Kleer and Williams, 1987]. Unfortunately,
the modeling task has turned out to be a stumbling block
for a wide-spread use of model-based diagnosis in prac-
tice. That is, the additional resources needed for coming
up with a diagnosis model, and the lack of options for inte-
grating the modeling process for development purposes and
the process of modeling for diagnosis purposes, have been
countermanding the advantages of model-based approaches
in many cases. In particular, there is a gap between models
we create during development (e.g. for some simulation),
and the models we require for diagnosing the deployed sys-
tem. This gap can be explained with the different objectives
behind the models. That is, e.g., a model used for simula-
tion usually has to be detailed and as close to the system’s
real-world behavior as we need it to be for a certain simu-
lation. In contrast, diagnosis models usually rely on quali-
tative system descriptions (for restricting the search space)
such that several system behaviors which we do not need to
distinguish for diagnosis purposes, are considered as a sin-
gle qualitative one.

There are many languages available for modeling phys-
ical systems, including Modelica [Fritzson, 2014] which is
an object-oriented, open, and multi-domain language. In
Modelica, we define models via sets of equations that can
range from simple algebraic equations to complex differen-
tial ones. These characteristics distinguish Modelica from
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other modeling languages, making it very flexible and easy
to employ. In addition, there is a huge variety of available
libraries targeting, e.g., digital circuits, electronics, mechan-
ics, or fluids, making Modelica an ideal modeling language
for a cyber-physical system (CPS). Modelica is optimized
for simulation, so that any Modelica model has to ensure
that its corresponding equations allow for computing ex-
actly one solution, i.e., an assignment of variable values that
solves all the equations at any point in time. Otherwise, an
error message is raised. Consequently, we cannot use Mod-
elica for diagnosis purposes directly, due to the lacking ca-
pabilities for dealing with unknown values or sets of values
to be assigned to a variable.

Our motivation behind this paper is thus to provide
a solution for automatically compiling Modelica models
into ones that we can use for diagnosis. In the litera-
ture, there have been several other approaches dealing with
this idea, e.g., [Sterling et al., 2014; Minhas et al., 2014;
Matei et al., 2015], as we discuss in detail in Section 2.
In contrast to earlier work, we are interested in provid-
ing models to be used for abductive diagnosis, so that we
extract cause-effect rules from Modelica models. Such
rules are intuitive to designers familiar with failure mode
and effect analysis (FMEA) [Hawkins and Woollons, 1998;
Catelani et al., 2010], making the approach even more at-
tractive for practical purposes. The underlying idea of ours
is to compare simulation results obtained for the correct
model with results for faulty variants that we create via fault
injection [Voas and McGraw, 1999]. In case of deviations,
we introduce a rule stating that the introduced fault leads to
the observed deviations. As we show in this paper, we then
enable a designer to automatically come up with a set of
cause-effect rules that she can use for abductive diagnosis.

This work extends previous work in the domain of ab-
ductive diagnosis [Wotawa, 2014; Christopher S. Gray and
Wotawa, 2015] where we used FMEA like tables for ex-
tracting the cause-effect rules. In those papers, the authors
introduced an algorithm that converts available tabular data
on the available components, potential faults occurring for
the individual components and the resulting effects, as well
as supporting conditions into horn clauses for abductive di-
agnosis. The advantage of that approach is that it draws on
information that is available in practice. Hence, an easy inte-
gration into existing processes for diagnosis and monitoring
can be assured. On the downside, the tabular information
has to be provided manually. Thus, in order to improve on
this situation, in this paper we suggest to use popular mod-
eling languages like Modelica for generating the desired ab-



ductive diagnosis models.
Before discussing our approach in detail in Section 3.2,

let us briefly discuss the underlying ideas using the voltage-
divider circuit shown in Figure 1. This voltage divider com-
prises two resistors and a battery, where if it works as in-
tended, the battery’s nominal voltage BAT of 12V is divided
between resistors R1 and R2 to an 8V voltage drop for R1
and a 4V voltage drop for R2. This, we can compute via
Ohm’s law u = r ∗ i (u being the voltage for some resis-
tance r, and i being the current through r), and the individ-
ual resistance values of 100Ω and 50Ω for R1 and R2. In
Figure 1, we depict also some faulty behavior. In particular,
we show how the circuit would behave if we assume that
from time point 0.5 seconds onwards, either the battery is
empty (bottom left picture) or resistor R2 has a short (bot-
tom right picture). In case of an empty battery, the voltage
drops for both resistors are going down to 0V. For a short in
R2, we have v2 =0V and v1 =12V, which means that the
whole voltage of the battery is dropped on R1.

Such knowledge can be used to form an abductive diag-
nosis model. There we would state, for instance, that an
empty battery causes both v1 and v2 to be 0V.

emptyBat→ val(v1, 0)
emptyBat→ val(v2, 0)

We might also want to express that in this case the voltage
on both resistors is smaller than expected:

emptyBat→ smaller(v1)
emptyBat→ smaller(v2)

A similar model for a short resistor R2 could look like:

short(R2)→ val(v1, 12)
short(R2)→ val(v2, 0)
short(R2)→ higher(v1)
short(R2)→ smaller(v2)

Any other fault mode, e.g., broken resistors et cetera, can
be handled in a similar way. Now, if we have a simula-
tion model available, so that we can simulate a fault’s ef-
fects, we can automate this idea. Ideally, we would have a
single simulation model, where we only need to switch on
and off the individual faults to be considered in a simula-
tion (switching between equations when doing so). When
simulating the model with all faults turned off, and com-
paring the outcome with the output obtained for variants
where we enable one individual fault after another, we are
able to retrieve the desired information about the individual
effects. As shown above, we can accommodate both, state-
ments about the faulty behavior using concrete or maybe
abstracted values, and also deviations between the expected
correct and the experienced faulty value. The latter devia-
tion model, i.e., a model where we state that a variable value
would be smaller or higher than expected, has been used for
diagnosis before, see, e.g., [Struss, 2004].

Before proposing our approach and its rule extraction al-
gorithm in detail in Section 3.2, we discuss related literature
in Section 2 where we focus on the use of Modelica for diag-
nosis. Afterwards, we introduce the preliminaries and other
basic definitions in Section 3, in order for the paper to be
self-contained. In Section 4 we discuss the automated rule
extraction process in detail. Finally, we present some case
studies in Section 5 and conclude in Section 6.

Figure 1: A voltage divider circuit

2 Related research
There have been three major approaches to using Modelica
models for diagnosis. The first one implements the basic
idea of applying those changes necessary for computing di-
agnoses to the language Modelica itself. This includes adap-
tions for handling unknown behavior, allowing us to come
up with simulations where no single value can be deter-
mined anymore, and the introduction of corresponding fault
modes and their behavior. In [Lunde, 2000], Lunde pre-
sented such an approach leading to the language Rodelica as
used in the model-based diagnosis system RODON [Bunus
et al., 2009]. In contrast to [Lunde, 2000] we neither change
the modeling language, nor do we rely on specific simula-
tion engines. Rather, we make use of Modelica and its avail-
able simulation infrastructure, but of course assume that the
components’ specific fault modes are known and can be ac-
tivated and deactivated during simulation.

The second approach augments Modelica models with
fault modes and their behavior. In [de Kleer et al., 2013;
Minhas et al., 2014] the authors correspondingly suggested
to automatically augment Modelica models, and to use them
for diagnosis as follows. When simulating the model with
faults turned on or off, the outcome is compared with the
expected fault free behavior. In case of differences that are
considered to be large enough, the activated fault mode can
be given back as result. The interesting idea behind [Minhas
et al., 2014] is that the authors suggest a Bayesian approach
for checking similarity. This paper is very close to ours,
with one important difference. The approach we introduce
in this paper uses an augmented Modelica model for creat-
ing a knowledge-base for abductive reasoning, which can be
used later on, i.e., after deployment, for diagnosis purposes.

The third approach to using Modelica for diagnosis
(see [Sterling et al., 2014]) uses corresponding models for
computing a system’s expected behavior to be compared
with the actually observed and measured one. In case of
a deviation, a model-based diagnosis engine is then used
for computing explanations, i.e., diagnoses. The required
model is extracted from the Modelica model such that basic
components are replaced with qualitative models in order to
come up with a component-connection model. Correspond-



ingly, we can use this concept for all cases where there are
qualitative models available for all the library components
contained in a model. An advantage of this approach is
that we can use Modelica for obtaining a system’s struc-
ture and for checking deviations between the expected and
observed system output. A significant drawback is, how-
ever, that somebody has to develop the qualitative models
for library components used in the system model.

There is further work dealing with diagnosis in the con-
text of Modelica. For example, Lee et al. [Lee et al., 2015]
presented a very different and interesting approach. Also re-
lying on component fault models, they use machine learning
for identifying the root cause of an issue, rather than using a
logic-based reasoning. In particular, the idea is to use simu-
lation results from models where a component is assumed to
be faulty for training a belief network. Once a certain behav-
ior is observed, the network can then be used to isolate the
corresponding faulty component. A related approach was
presented in [Matei et al., 2015] where the authors used par-
tial models of a railway switch to learn diagnosis classifiers
with a random-forest algorithm.

In contrast to Lee and colleagues, we rely on model-based
diagnosis and in particular on abductive diagnosis. We fur-
thermore do not rely on machine learning and we are also
able to derive all diagnoses for a certain behavior, which is
usually not possible when relying on belief networks.

3 Preliminaries
In this section, we define our underlying system model com-
prised of a system’s Modelica model and augmented data
like its list of components and their behavior modes. In the
second half, we briefly introduce abductive diagnosis.

3.1 System modeling
Our starting point is a system’s Modelica model. In the
following definitions we state the data about such a model
that we need for automatically extracting cause-effect rules
based on fault injection [Voas and McGraw, 1999]. To this
end, we assume that the Modelica model has the means for
enabling or disabling individual fault modes as defined for
the individual components. Every mode of a particular com-
ponent can be a hypothesis for a certain observed faulty be-
havior, i.e., the observed symptoms. In addition, we dif-
ferentiate between input and output variables, where the in-
put variables are those for specifying a certain desired input
behavior, and the outputs are those variables that might be
observed and work as symptoms in the context of our ab-
ductive diagnostic reasoning.
Definition 1 (System model). A system model M is a tu-
ple (COMP,MODES, µ, I, O,P) comprising a set of com-
ponents COMP, a set of modes MODES that has at least
the correct mode ok as element, a function µ : COMP 7→
MODES mapping components to their featured modes, a set
I of variables considered as inputs, a setO of variables con-
sidered as outputs, and a Modelica model P that allows for
setting a mode m ∈ µ(c) for each component c ∈ COMP.
Example 1. In Fig. 2, we show the Modelica source code
for our voltage-divider circuit example from Fig. 1. In
this code, there is a general definition of a component
MyComponent comprising some basic electrical behav-
ior (e.g. knowledge concerning the pins). MyBattery
and MyResistor are sub-classes of MyComponent, in-
heriting its equation, but extending it to capture the more

specific behavior of the component type. The union of all
fault modes for the individual components contains ok for
the ordinary behavior, broken and short for a resis-
tor’s fault modes, and empty for a faulty battery. Hence,
a system model (COMP,MODES, µ, I, O,P) would com-
prise the following elements:

COMP = {bat,r1,r2}
MODES = {ok, broken, short, empty}
µ(bat) = {ok, empty}
µ(r1) = µ(r2) = {ok, broken, short}
I = ∅
O = {r1.v,r2.v}

In addition to a system model, we need to introduce the
concept of simulation, i.e., the computation of values for a
system’s variables over time. To this end, we first introduce
the concept of mode assignments, i.e., assignments of modes
to components at particular points in time.
Definition 2 (Mode assignment). Let TIME be a finite set of
time points. A mode assignment ∆ is a set of functions δi :
COMP×TIME 7→ MODES that assign for each component
c ∈ COMP and time point t ∈ TIME a mode m ∈ µ(c), i.e.,
∆ = {δ1, . . . , δ|TIME|} where ∀i ∈ {1, . . . , |TIME|} : ∀t ∈
TIME : ∀c ∈ COMP : δi(c, t) ∈ µ(c).

During simulation, a mode assignment allows for chang-
ing a component’s behavior and in turn changing a system’s
behavior. In the following definition of a simulation func-
tion, we make use of mode assignments.
Definition 3 (Simulation). Let us assume that we have a
system model M = (COMP,MODES, µ, I, O,P), a test
bench T specifying the desired system inputs over time, a
mode assignment ∆, and an end time te. A simulation func-
tion sim is a function that computes via P the values of all
variables over time between 0 and te, considering (a) test
bench T for inputs I and (b) the mode assignment ∆.

We can easily implement such a simulation function sim
using a Modelica simulator. To this end, we construct a new
test bench T′ from T and ∆. A typical test bench T for a
Modelica circuit SUT such that we change inputs over time,
would follow, e.g., the following structure:

model Testbench
SUT sys;

equation
if (time < t1) then

.... // First inputs
elsif (time >= t1 and time < t2) then

.... // Next inputs
elsif

....
else

....
end if;

end Testbench;

When taking ∆ into account, we can easily extend T to
derive T′ that also captures the assignments of modes to the
individual components over time.
Example 2. Let us continue Example 1, considering the
mode assignment δ(bat, ok, 0), δ(r1, ok, 0), δ(r2, ok, 0),
δ(bat, ok, 0.5), δ(r1, ok, 0.5), δ(r2, short, 0.5). Due to
the fact that the voltage divider has no input values, we can
easily obtain test bench T′ only considering ∆.



connector MyPin
Real v;
flow Real i;

end MyPin;

type FaultType = enumeration(
ok,broken,short,empty);

partial model MyComponent
MyPin p,m;
Real v;
Real i;
FaultType state(start = FaultType.ok);

equation
v = p.v - m.v;
i = p.i;
0.0 = p.i + m.i;

end MyComponent;

model MyGround
MyPin p;

equation
p.v =0.0;

end MyGround;

model MyBattery
extends MyComponent;
parameter Real vn;

equation
if state == FaultType.ok then
v = vn;

else
v = 0.0;

end if;
end MyBattery;

model MyResistor
extends MyComponent;
parameter Real r;

equation
if state == FaultType.ok then
v = r * i;

elseif state == FaultType.short then
v = 0;

else
i = 0;

end if;
end MyResistor;

model MySimpleCircuit
MyResistor r1(r=100);
MyResistor r2(r=50);
MyBattery bat(vn=12);
MyGround gnd;

equation
connect(bat.p,r1.p);
connect(r1.m,r2.p);
connect(bat.m,r2.m);
connect(bat.m,gnd.p);

end MySimpleCircuit;

Figure 2: The Modelica program implementing the voltage
divider circuit

model TestbenchPrime
MySimpleCircuit sut;

equation
if (time < 0.5) then

sut.r1.state = FaultType.ok;
sut.r2.state = FaultType.ok;
sut.bat.state = FaultType.ok;

else
sut.r1.state = FaultType.ok;
sut.r2.state = FaultType.short;
sut.bat.state = FaultType.ok;

end if;end Testbench;

Using a Modelica simulator and the extended test bench
T′, the simulation function sim can be defined as a call to
this simulator using P ∪ T′ and end time te as parameters.
All values for outputs o ∈ O in M will be computed during
the simulation, and we assume that they are returned as a set
of tuples (o, v) for t where o ∈ O and v gives o’s value.

3.2 Abductive diagnosis
In this subsection, we briefly recapitulate the basic defini-
tions of abductive diagnosis. To this end, let us first in-
troduce the concept of a knowledge base. A knowledge
base comprises a set of horn clause rules HC over proposi-
tional variables PROPS. Please let us remind you that a horn
clause is a clause (disjunction of literals) such that at most
one literal is positive. When diagnosing engineered sys-
tems, such propositional variables state, for example, some
component’s particular mode or a certain value. Consider-
ing our example from the introduction, we might use, e.g.,
proposition short(R2) for stating that the resistor R2 from
our running example has a short. A proposition nok(R2.v)
might be used to indicate that the voltage at resistor R2 de-
viates from the expected voltage. For stating a behavior,
e.g., saying that a short of R2 leads to an unexpected voltage
drop at the same resistor, we use the following horn clause
short(R2)→ nok(R2.v).

Now, using the definitions of [Friedrich et al., 1990], let
us introduce knowledge bases formally .
Definition 4 (Knowledge base (KB)). A knowledge base
(KB) is a tuple (A,Hyp,Th) where A ⊆ PROPS denotes
a set of propositional variables, Hyp ⊆ A a set of hypothe-
ses, and Th ⊆ HC a set of horn clause sentences over A.

In the context of this paper, hypotheses correspond di-
rectly to causes. Hence, from here on we will use the terms
hypotheses and causes in an interchangeable way.
Example 3. A partial KB for our running example as dis-
cussed before looks like:( {short(R2), nok(R2.v)},

{short(R2)},
{short(R2)→ nok(R2.v)}

)

In the next step we define a propositional horn clause ab-
duction problem.
Definition 5 (PHCAP). Given a knowledge base
(A,Hyp,Th) and a set of observations Obs ⊆ A, the
tuple (A,Hyp,Th,Obs) forms a propositional horn clause
abduction problem (PHCAP).

A solution of a PHCAP is a set of hypotheses that allows
deriving the given observations or symptoms. The following
definition from [Friedrich et al., 1990] states this formally.



Definition 6 (Diagnosis; Solution of a PHCAP). Given a
PHCAP (A,Hyp, Th,Obs), a set ∆ ⊆ Hyp is a solution if
and only if ∆ ∪ Th |= Obs and ∆ ∪ Th 6|= ⊥. A solution ∆
is parsimonious or minimal if and only if no set ∆′ ⊂ ∆ is
a solution.

A solution ∆ of some PHCAP is an explanation for the
given observations. Thus we might also refer to ∆ as abduc-
tive diagnosis (or diagnosis for short). In Definition 6, diag-
noses do not need to be minimal or parsimonious. In most
practical cases, however, only minimal diagnoses or mini-
mal explanations for given effects are of interest. Hence,
from here on, we assume that all diagnoses are minimal
ones, if not specified explicitly otherwise.
Example 4. Let us continue Example 3 and add the ob-
servation nok(R2.v) to the KB to form a PHCAP. The only
solution for this problem is {short(R2)}. If we assume an
observation ¬nok(R2.v), then there is no solution given the
partial KB of Example 3.

Finding minimal diagnoses for a given PHCAP is an NP-
complete problem (see [Friedrich et al., 1990]). However,
computing all parsimonious solutions can be done easily
and efficiently in cases where the number of hypotheses is
not too big. An algorithm for computing abductive solu-
tions might use De Kleer’s Assumption-based Truth Main-
tenance System (ATMS) [de Kleer, 1986], where we refer
the interested reader to [de Kleer, 1988] for an ATMS algo-
rithm. For using an ATMS for abductive diagnosis, we only
need to encode observations as a single rule, i.e., for obser-
vations Obs = {o1, . . . , ok}, we generate a new proposi-
tion σ and add o1 ∧ . . . ∧ ok → σ to the theory Th that is
passed to the ATMS. The label of the corresponding node
of σ is an abductive diagnosis for Obs. Due to the rules
for the node labels, which only comprise hypotheses, it is
ensured that the solution is minimal, sound, complete, and
consistent. For more technical details, including comput-
ing distinguishing diagnoses and characterizing knowledge
bases according to their capability of distinguishing diag-
noses, we refer the interested reader to [Wotawa, 2014]. For
a discussion on whether abductive reasoning can be used in
practice, we recommend reading [Koitz and Wotawa, 2015].

4 Automated rule extraction
As briefly depicted in the introduction, we extract the de-
sired rules from a system model M via comparing the out-
come of two simulation runs, i.e., one assuming that no fault
is enabled for any component, and one with exactly one fault
mode enabled for one individual component. The differ-
ence between the two behaviors is mapped to a proposition,
which can be used as observation in a PHCAP. The inputs
are also mapped to propositions, as are those modes of com-
ponents ci ∈ COMP that are not equal to the correct mode
ok. The latter are also considered as hypotheses for diagno-
sis purposes.

Algorithm 1 formalizes the necessary steps for our rule
extraction concept. In lines 1–2, we initialize the sets used
in the computation, i.e., the set of propositions A, the set of
hypotheses Hyp, and the horn clauses Th. We assume here
that we have input values over time in I , as is necessary for
stimulating the system under consideration. We further as-
sume that this information can be mapped to a set of propo-
sitional variables and that it is also represented in the given
test bench T. A simple mapping would state that each vari-
able occurring in I over time is ok, i.e., ok(v, t) such that v

Algorithm 1 Rule extraction from Modelica models

Input: System model (COMP,MODES, µ, I, O,P), a test
bench T, a time tf where a fault should be injected, and
an end time te

Output: A KB (A,Hyp,Th)
1: Let Ip be the propositional representation of I .
2: Let A be Ip and let Hyp, and Th be empty sets.
3: for c in COMP do
4: for m in µ(c) \ {ok} do
5: Let ∆1(c, 0) = ok
6: Let ∆2(c, 0) = ok and ∆2(c, tf ) = m
7: for c′ in COMP \ {c} do
8: ∆1(c′, 0) = ok
9: ∆2(c′, 0) = ok and ∆2(c′; tf ) = ok

10: end for
11: Let sim(P,T,∆1, te) be Bcorr.
12: Let sim(P,T,∆2, te) be Bfaulty.
13: Let D be the result of diff(Bcorr,Bfaulty) only

considering variables in O.
14: Add all elements of D to A.
15: Add the proposition m(c) to A and Hyp.
16: for d in D do
17: Add the rule m(c) ∧ (

∧
p∈Ip p)→ d to Th

18: end for
19: end for
20: end for
21: return (A,Hyp,Th)

is a variable and t a point in time where a value is set. Alter-
natively, we might state a precise certain value, which has
to be provided in order to be able to use the extracted rules
for diagnosis purposes, i.e., value(v, t, x) such that v is the
name of the variable, t the time point, and x the value to be
set for v at time t.

Lines 3–20 implement the core of our rule extraction pro-
cess. For all components and their modes we iterate (lines
3–4) over lines 5–17. In the first part of the inner loop’s
body (lines 5–10) the mode assignments for the correct sim-
ulation run (∆1) and for the faulty one (∆2) are generated.
With the exception of the currently “active” component c
(chosen in line 3), all other components are assigned mode
ok. For component c, mode m (selected in line 4) is as-
signed for ∆2 and ok for ∆1 at a given point in time tf .
Note that here we assume a simpler mode assignment with
only one permanent change at tf . Future extensions will
consider also different mode assignments over time. How-
ever, for our purpose, i.e., obtaining the effects of faults at
specific points in time, this restriction seems to be appro-
priate. Note that tf should be selected in a way such that
the initialization of a system is finished and where we can
observe the ordinary expected behavior.

In lines 11–13, we start the simulation runs and compare
the observed results with function diff. In the simulation
function sim, we assume that the test bench T is adapted
such as to include mode assignment data (for switching fault
modes of components on and off) like discussed and illus-
trated in the last section (T→ T′).

The function diff deserves special attention in that there
are two potential concepts for implementing it. Either, in
case that there is at least one output where the behaviors dif-
fer diff returns the propositional representation of values for
all output variables from O, or diff returns the deviation of



values between Bcorr and Bfaulty, e.g., stating that the value
caused by an active fault for some observed variable o ∈ O
is smaller than the value expected for the case that there is
no fault in the system at all. Please note that also Struss used
the latter for diagnosis purposes [Struss, 2004].

The former mapping option requires a propositional rep-
resentation for translating the real simulation values to a
qualitative domain. For example, we might consider only
values like 0, vmax, or v as qualitative values for a vari-
able, such that 0 represents the zero value, vmax the maxi-
mum value that can be reached, and v any value between 0
and vmax. Obviously, the diagnosis capabilities might vary,
depending on the chosen qualitative representation and the
encoded information. In [Sachenbacher and Struss, 2003;
2005], the authors discuss this issue, i.e., the task of finding
an appropriate task dependent qualitative abstraction, and
also show how to automate this abstraction. Now let us for-
malize these two approaches at implementing diff:

Qualitative representations: For a qualitative representa-
tion, we assume a quantitative domain D and its qual-
itative representation DQ, together with a mapping
function ρ : D 7→ DQ. Then, we define diff as:
diff(B1, B2)

=

{
∅ if 6 ∃(x, v) ∈ B1, (x, v

′) ∈ B2 : v 6= v′

{val(x, ρ(v))|(x, v) ∈ B2} otherwise

Deviation models: In case we prefer a deviation model, we
are “only” interested in whether the value for a variable
is, e.g., smaller, equal, or larger than its expected value.
Hence, we define diff straightforwardly as follows:
diff(B1, B2)

= {o(x)|(x, v) ∈ B1, (x, v
′′) ∈ B2 ∧ v′ o∗ v}

In this definition, o and o∗ represent the relational
operator on the side of the qualitative and quantita-
tive domain respectively. For example, the operator
o ∈ {smaller, equal, larger} in the qualitative do-
main corresponds to o∗ ∈ {<,=, >} in the quantitative
(integer, real) domain. While we showed the obvious
relational operators that we might want to consider, for
some projects, we might also want to add, e.g, ones
indicating that there is a huge difference in the values
(above a certain threshold).

In the last part of the core functionality of our rule ex-
traction algorithm (i.e., lines 14–18), we add the obtained
propositions, hypotheses, and horn clause rules to the re-
spective sets. Finally, we return the PHCAP in line 21.

It is easy to see that, by construction, our rule extrac-
tion algorithm works as expected. If we assume that sim
and diff terminate, then termination is ensured since we
only have a finite number of components and modes. In
respect of time, the complexity of Algorithm 1 is bounded
by O(|COMP|2 · |MODES|) when assuming that sim and
diff run in unit time. Note that in practice simulation is very
much likely to be responsible for most of the experienced
run-time. However, since we can automate all parts of the
algorithm and can execute them before deploying the sys-
tem (and in turn before deploying the diagnosis engine), the
time complexity of the rule conversion process seems to be
negligible since we do not encounter it when running the
diagnosis engine itself.

5 Case studies
In order to show the viability of our proposed method, we
carried out two case studies. So let us start with the first
case study showing the results we obtained when using Al-
gorithm 1 for our voltage-divider example. The correspond-
ing source code for the Modelica model is shown in Fig-
ure 2, and the list of components COMP, the list of be-
havioral modes MODES, etc. were derived in Examples 1
and 2. When applying Algorithm 1 considering COMP =
{bat,r1,r2}, MODES = {ok, broken, short, empty},
and assuming tf to be set to 0.5 seconds like for Example 2,
we would obtain the following results when simulating the
resulting faulty behavior.

Component Mode v1 v2 e1 e2
BAT empty 0 0 smaller smaller
R1 short 0 12 smaller larger
R1 broken 12 0 larger smaller
R2 short 12 0 larger smaller
R2 broken 0 12 smaller larger

In this table, we also state the deviations (or effects e1, e2)
for variables v1 and v2 and the individual fault modes (let
us remind you that the nominal values should be 8V for v1
and 4V for v2). What we see also from our example is that
the values obtained when simulating the Modelica program,
do not necessarily guarantee that we are able to distinguish
between all diagnoses. For example, both a broken R1 and
a short R2 would produce the same values for v1 and v2, so
that we do not end up with a single explanation/diagnosis in
general. Let us now use this table to generate the qualitative
and the deviation model (concerning diff in Algorithm 1) for
the voltage divider. For both models we have the same set
of hypotheses:

{
empty(BAT), short(R1), broken(R1),

short(R2), broken(R2)

}
.

Qualitative model For this kind of model
we assume a qualitative domain of
{0, (0, 4), 4, (4, 8), 8, (8, 12), 12} such that we
consider all voltage values occurring in the correct
model. The open interval (x, y) stands for any value
larger than x and smaller than y. For this repre-
sentation, the algorithm would return the following
rules:

empty(BAT)→ val(v1, 0)
empty(BAT)→ val(v2, 0)
short(R1)→ val(v1, 0)
short(R1)→ val(v2, 12)
broken(R1)→ val(v1, 12)
broken(R1)→ val(v2, 0)
short(R2)→ val(v1, 12)
short(R2)→ val(v2, 0)
broken(R2)→ val(v1, 0)
broken(R2)→ val(v2, 12)

For this case, the set of propositions includes the
hypotheses (like empty(BAT) and the elements in
{val(v1, 0), val(v1, 12), val(v2, 0), val(v2, 12)}. No
other qualitative values are necessary for this example.

Deviation model The deviation model for our running ex-
ample comprises the following rules:



empty(BAT)→ smaller(v1)
empty(BAT)→ smaller(v2)
short(R1)→ smaller(v1)
short(R1)→ larger(v2)
broken(R1)→ larger(v1)
broken(R1)→ smaller(v2)
short(R2)→ larger(v1)
short(R2)→ smaller(v2)
broken(R2)→ smaller(v1)
broken(R2)→ larger(v2)

In this case, the set of propositions is formed
by the hypotheses together with propositions
{smaller(v1), larger(v1), smaller(v2), larger(v2)}.

Both kinds of model represent the obtained information
in a qualitative way. It is worth mentioning, that in addi-
tion, we might also want to encode in a knowledge base
that some values cannot occur at the same time. For ex-
ample, a voltage drop cannot be larger and smaller than
some value at the same time. Such knowledge can be added
easily via stating that smaller(v1) ∧ larger(v1) → ⊥ and
smaller(v2) ∧ larger(v2) → ⊥. Of course, we can also
automate the process of adding such mutual exclusiveness
data.

The purpose of the second case study is to show that our
approach can be applied also to to analog circuits compris-
ing capacitors and switches such that the behavior over time
is more complicated. In Figure 3, we show such a circuit,
where we use a switch SW for turning a bulb BULB on or
off. The purpose of capacitor C1 is such that the bulb stays
on (red line in Fig. 4) for a short while after switching it
off (see blue line in Fig. 4), drawing from the energy stored
while loading C1 - see the green line for the current in the
capacitor). Thus, we have one input, i.e., SW, and one out-
put, i.e., BULB transmitting light or not. Appropriate sets
of behavioral modes would be {ok, empty} for the battery,
and {ok, short, broken} for the other components. Via cor-
responding simulations, we obtained the results shown in
the following table, where we focus on the first difference
between the expected value of light and the observed one at
a particular point in time. In the table we see also the value
of the input variable on stating the status of SW.

Component Mode on light time
BAT empty on off 0.5
R1 short off on 1.13
R1 broken on off 0.5
SW short off on 0.0
SW broken on off 0.5
C1 short off off 1.0
C1 broken off off 1.0
R2 short off off 1.09
R2 broken off off 1.0

BULB short on off 0.5
BULB broken on off 0.5

Again, it is evident from the table that we cannot distin-
guish between all faults via the obtained deviations. We
also see from Figure 4 that for a short in R1, the output
might have the same shape, but would show a slightly dif-
ferent timing. Using the obtained table of behavioral devia-
tions, computing the knowledge base for abductive diagno-
sis as described in this paper is straightforward. However,
for more detailed results, we should probably introduce the

means for reasoning about differences in the timing, e.g.,
stating that BULB goes off too late. Thus, we see that our
approach for extracting a PHCAP can be used for many
systems, and that the detail level of the obtained knowl-
edge base depends on the chosen deviation description as
expected and discussed.

6 Conclusion
When facing the decision of whether to employ some
model-based diagnosis approach for a project, more often
than not the resources and knowledge to come up with the
needed model prohibit a decision towards an implemen-
tation. In our paper, we address some of the issues that
make the required modeling step so demanding. That is,
we show for a popular modeling language how to automat-
ically derive a model containing cause and effect rules that
we can then use for abductive diagnosis. For computing
our rules, we make use of Modelica’s simulation engine,
where the only data a designer has to deliver are data that
she would consider during FMEA anyway. This data con-
cerning fault models for components and input vectors for
triggering them can, which is important, be defined in Mod-
elica. In particular, a designer can add multiple behaviors
for a component to the model, and our approach will enable
them individually in order to simulated the corresponding
behavior as basis for our diagnosis model.

The derived abductive diagnosis model can then be
used to solve propositional horn clause abduction problems
which basically consist of the data we derived when creat-
ing our cause and effect rules plus the observed symptoms.
An advantage of this type of model-based reasoning is that
it is quite intuitive to what a maintenance expert would think
about when considering FMEA data, but offers the advan-
tage of a formal background and thus is amenable to auto-
mated reasoning.

Currently, we have been limiting the algorithm to the sim-
ulation of single faults. For future work, we intend to extend
this to simulations of scenarios with multiple faults. Like we
mentioned, we plan to extend the algorithm also to incorpo-
rate a more general intermediate fault activation as hinted at
in our definitions. Last but not least, while we showed the
viability of our approach for some examples, we need more
and also industrial sized case studies as showcases. Hope-
fully corresponding results can contribute to increasing the
deployment of model-based diagnosis in practice.
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